Briones Ana M, González José M, Somoza Beatriz, Giraldo Jesús, Daly Craig J, Vila Elisabet, González M Carmen, McGrath John C, Arribas Silvia M
Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029-Madrid, Spain.
J Physiol. 2003 Oct 1;552(Pt 1):185-95. doi: 10.1113/jphysiol.2003.046904. Epub 2003 Jul 4.
Chronic hypertension is associated with resistance artery remodelling and mechanical alterations. However, the contribution of elastin has not been thoroughly studied. Our objective was to evaluate the role of elastin in vascular remodelling of mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR). MRA segments from Wistar Kyoto rats (WKY) and SHR were pressurised under passive conditions at a range of physiological pressures with pressure myography. Confocal microscopy was used to determine differences in the quantity and organisation of elastin in intact pressure-fixed arteries. To assess the contribution of elastin to MRA structure and mechanics, myograph-mounted vessels were studied before and after elastase incubation. When compared with WKY, MRA from SHR showed: (1) a smaller lumen, (2) decreased distensibility at low pressures, (3) a leftward shift of the stress-strain relationship, (4) redistribution of elastin within the internal elastic lamina (IEL) leading to smaller fenestrae but no change in fenestrae number or elastin amount. Elastase incubation (1) fragmented the structure of IEL in a concentration-dependent fashion, (2) abolished all the structural and mechanical differences between strains, and (3) decreased distensibility at low pressures. The study shows the overriding role of elastin in determining vascular dimensions and mechanical properties in a resistance artery. In addition, it informs hypertensive remodelling. MRA remodelling and increased stiffness are accompanied by elastin restructuring within the IEL and elastin degradation reverses structural and mechanical alterations of SHR MRA. Differences in elastin organisation are, therefore, a central element in small artery remodelling in hypertension.
慢性高血压与阻力动脉重塑和力学改变有关。然而,弹性蛋白的作用尚未得到充分研究。我们的目的是评估弹性蛋白在自发性高血压大鼠(SHR)肠系膜阻力动脉(MRA)血管重塑中的作用。使用压力肌动描记法在一系列生理压力下对来自Wistar Kyoto大鼠(WKY)和SHR的MRA节段进行被动加压。共聚焦显微镜用于确定完整压力固定动脉中弹性蛋白数量和组织的差异。为了评估弹性蛋白对MRA结构和力学的贡献,在弹性蛋白酶孵育前后对安装在肌动描记器上的血管进行了研究。与WKY相比,SHR的MRA表现为:(1)管腔较小;(2)在低压下扩张性降低;(3)应力-应变关系向左移位;(4)弹性蛋白在内部弹性膜(IEL)内重新分布,导致窗孔变小,但窗孔数量或弹性蛋白量没有变化。弹性蛋白酶孵育(1)以浓度依赖性方式破坏IEL的结构;(2)消除了不同品系之间所有的结构和力学差异;(3)降低了低压下的扩张性。该研究表明弹性蛋白在决定阻力动脉血管尺寸和力学特性方面起主导作用。此外,它为高血压重塑提供了信息。MRA重塑和硬度增加伴随着IEL内弹性蛋白的重组,弹性蛋白降解可逆转SHR MRA的结构和力学改变。因此,弹性蛋白组织的差异是高血压中小动脉重塑的核心因素。