Suppr超能文献

图像重建迭代算法的收敛性研究

Convergence studies on iterative algorithms for image reconstruction.

作者信息

Jiang Ming, Wang Ge

机构信息

CT/Micro-CT Laboratory, Department of Radiology, University of Iowa, Iowa City, IA 52242, USA.

出版信息

IEEE Trans Med Imaging. 2003 May;22(5):569-79. doi: 10.1109/TMI.2003.812253.

Abstract

We introduce a general iterative scheme for image reconstruction based on Landweber's method. In our configuration, a sequential block-iterative (SeqBI) version can be readily formulated from a simultaneous block-iterative (SimBI) version, and vice versa. This provides a mechanism to derive new algorithms from known ones. It is shown that some widely used iterative algorithms, such as the algebraic reconstruction technique (ART), simultaneous ART (SART), Cimmino's, and the recently designed diagonal weighting and component averaging algorithms, are special examples of the general scheme. We prove convergence of the general scheme under conditions more general than assumed in earlier studies, for its SeqBI and SimBI versions in the consistent and inconsistent cases, respectively. Our results suggest automatic relaxation strategies for the SeqBI and SimBI versions and characterize the dependence of the limit image on the initial guess. It is found that in all cases the limit is the sum of the minimum norm solution of a weighted least-squares problem and an oblique projection of the initial image onto the null space of the system matrix.

摘要

我们介绍一种基于兰德韦伯方法的图像重建通用迭代方案。在我们的配置中,顺序块迭代(SeqBI)版本可以很容易地从同时块迭代(SimBI)版本推导出来,反之亦然。这提供了一种从已知算法推导新算法的机制。结果表明,一些广泛使用的迭代算法,如代数重建技术(ART)、同时ART(SART)、西明诺算法以及最近设计的对角加权和分量平均算法,都是该通用方案的特殊示例。我们分别在比早期研究中假设的条件更一般的情况下,证明了该通用方案在一致和不一致情况下其SeqBI和SimBI版本的收敛性。我们的结果提出了SeqBI和SimBI版本的自动松弛策略,并刻画了极限图像对初始猜测的依赖性。结果发现,在所有情况下,极限都是加权最小二乘问题的最小范数解与初始图像在系统矩阵零空间上的斜投影之和。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验