Pan Shaoyan, Su Vanessa, Peng Junbo, Li Junyuan, Gao Yuan, Chang Chih-Wei, Wang Tonghe, Tian Zhen, Yang Xiaofeng
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Computer Science, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA.
Department of Computer Science, Emory University, Atlanta, GA 30322, USA.
Med Image Anal. 2025 Jun 20;105:103694. doi: 10.1016/j.media.2025.103694.
We propose a real-time volumetric imaging framework that reconstructs cone-beam CT (CBCT) images using surface and single-angle X-ray projections to enable tumor motion tracking during image-guided radiation therapy. Optical surface imaging (OSI) captures high-frequency surface topography of the patient on the treatment couch and serves as a surrogate for intra-fractional tumor motion. However, OSI lacks internal anatomical visualization, limiting its accuracy in localizing internal tumors, where surface motion often poorly correlates with tumor motion. To address this, the proposed framework integrates high-frequency surface imaging with low-frequency single-angle X-ray projections from the on-board CBCT system, minimizing imaging dose. A patient-specific generative model-termed physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM)-is developed to synthesize Optical Surface-Derived CBCT (OSD-CBCT) volumes. This model leverages prior knowledge of patient-specific anatomy and respiratory motion patterns from four-dimensional CT (4DCT) acquired during treatment planning. A geometric transformation module (GTM) extracts volumetric anatomical information from single-angle X-ray data, which, combined with OSI input, guides the DDPM through a physics-integrated cycle-consistency refinement process to produce high-quality OSD-CBCT images throughout treatment delivery. A simulation study using data from 56 lung cancer patients demonstrated that the framework generates high-fidelity volumetric reconstructions with accurate tumor localization, validated by intensity-, structure-, visual-, and clinically based evaluations. This work highlights the potential of the proposed framework to enable real-time, low-dose volumetric imaging for precise tumor tracking, advancing image-guided techniques for motion-sensitive radiation therapy and interventional procedures.
我们提出了一种实时容积成像框架,该框架利用表面和单角度X射线投影重建锥束CT(CBCT)图像,以在图像引导放射治疗期间实现肿瘤运动跟踪。光学表面成像(OSI)可捕获治疗床上患者的高频表面形貌,并用作分次内肿瘤运动的替代指标。然而,OSI缺乏内部解剖结构可视化,限制了其在定位内部肿瘤时的准确性,因为表面运动通常与肿瘤运动相关性较差。为了解决这个问题,所提出的框架将高频表面成像与来自机载CBCT系统的低频单角度X射线投影相结合,从而将成像剂量降至最低。开发了一种针对特定患者的生成模型——物理集成一致性细化去噪扩散概率模型(PC-DDPM),以合成光学表面衍生的CBCT(OSD-CBCT)容积。该模型利用了治疗计划期间从四维CT(4DCT)获得的特定患者解剖结构和呼吸运动模式的先验知识。几何变换模块(GTM)从单角度X射线数据中提取容积解剖信息,该信息与OSI输入相结合,通过物理集成的循环一致性细化过程引导DDPM,以在整个治疗过程中生成高质量的OSD-CBCT图像。一项使用56名肺癌患者数据的模拟研究表明,该框架能够生成具有准确肿瘤定位的高保真容积重建图像,并通过基于强度、结构、视觉和临床的评估得到验证。这项工作突出了所提出框架在实现实时、低剂量容积成像以进行精确肿瘤跟踪方面的潜力,推动了对运动敏感的放射治疗和介入程序的图像引导技术的发展。