Suppr超能文献

使用表面和X射线成像进行实时容积CBCT重建以用于图像引导放射治疗。

Real-time volumetric CBCT reconstruction using surface and X-ray imaging for image-guided radiotherapy.

作者信息

Pan Shaoyan, Su Vanessa, Peng Junbo, Li Junyuan, Gao Yuan, Chang Chih-Wei, Wang Tonghe, Tian Zhen, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Computer Science, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA.

Department of Computer Science, Emory University, Atlanta, GA 30322, USA.

出版信息

Med Image Anal. 2025 Jun 20;105:103694. doi: 10.1016/j.media.2025.103694.

Abstract

We propose a real-time volumetric imaging framework that reconstructs cone-beam CT (CBCT) images using surface and single-angle X-ray projections to enable tumor motion tracking during image-guided radiation therapy. Optical surface imaging (OSI) captures high-frequency surface topography of the patient on the treatment couch and serves as a surrogate for intra-fractional tumor motion. However, OSI lacks internal anatomical visualization, limiting its accuracy in localizing internal tumors, where surface motion often poorly correlates with tumor motion. To address this, the proposed framework integrates high-frequency surface imaging with low-frequency single-angle X-ray projections from the on-board CBCT system, minimizing imaging dose. A patient-specific generative model-termed physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM)-is developed to synthesize Optical Surface-Derived CBCT (OSD-CBCT) volumes. This model leverages prior knowledge of patient-specific anatomy and respiratory motion patterns from four-dimensional CT (4DCT) acquired during treatment planning. A geometric transformation module (GTM) extracts volumetric anatomical information from single-angle X-ray data, which, combined with OSI input, guides the DDPM through a physics-integrated cycle-consistency refinement process to produce high-quality OSD-CBCT images throughout treatment delivery. A simulation study using data from 56 lung cancer patients demonstrated that the framework generates high-fidelity volumetric reconstructions with accurate tumor localization, validated by intensity-, structure-, visual-, and clinically based evaluations. This work highlights the potential of the proposed framework to enable real-time, low-dose volumetric imaging for precise tumor tracking, advancing image-guided techniques for motion-sensitive radiation therapy and interventional procedures.

摘要

我们提出了一种实时容积成像框架,该框架利用表面和单角度X射线投影重建锥束CT(CBCT)图像,以在图像引导放射治疗期间实现肿瘤运动跟踪。光学表面成像(OSI)可捕获治疗床上患者的高频表面形貌,并用作分次内肿瘤运动的替代指标。然而,OSI缺乏内部解剖结构可视化,限制了其在定位内部肿瘤时的准确性,因为表面运动通常与肿瘤运动相关性较差。为了解决这个问题,所提出的框架将高频表面成像与来自机载CBCT系统的低频单角度X射线投影相结合,从而将成像剂量降至最低。开发了一种针对特定患者的生成模型——物理集成一致性细化去噪扩散概率模型(PC-DDPM),以合成光学表面衍生的CBCT(OSD-CBCT)容积。该模型利用了治疗计划期间从四维CT(4DCT)获得的特定患者解剖结构和呼吸运动模式的先验知识。几何变换模块(GTM)从单角度X射线数据中提取容积解剖信息,该信息与OSI输入相结合,通过物理集成的循环一致性细化过程引导DDPM,以在整个治疗过程中生成高质量的OSD-CBCT图像。一项使用56名肺癌患者数据的模拟研究表明,该框架能够生成具有准确肿瘤定位的高保真容积重建图像,并通过基于强度、结构、视觉和临床的评估得到验证。这项工作突出了所提出框架在实现实时、低剂量容积成像以进行精确肿瘤跟踪方面的潜力,推动了对运动敏感的放射治疗和介入程序的图像引导技术的发展。

相似文献

1
Real-time volumetric CBCT reconstruction using surface and X-ray imaging for image-guided radiotherapy.
Med Image Anal. 2025 Jun 20;105:103694. doi: 10.1016/j.media.2025.103694.
9
Localization accuracy of 6-second CBCT for lung IGRT with various breathing patterns.
J Appl Clin Med Phys. 2025 Jul;26(7):e70130. doi: 10.1002/acm2.70130. Epub 2025 May 29.

本文引用的文献

1
Deep learning-based Fast Volumetric Image Generation for Image-guided Proton Radiotherapy.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):973-983. doi: 10.1109/trpms.2024.3439585.
3
Data-Driven Volumetric Computed Tomography Image Generation From Surface Structures Using a Patient-Specific Deep Leaning Model.
Int J Radiat Oncol Biol Phys. 2025 Apr 1;121(5):1349-1360. doi: 10.1016/j.ijrobp.2024.11.077. Epub 2024 Dec 6.
7
Synthetic CT generation from MRI using 3D transformer-based denoising diffusion model.
Med Phys. 2024 Apr;51(4):2538-2548. doi: 10.1002/mp.16847. Epub 2023 Nov 27.
8
PET image denoising based on denoising diffusion probabilistic model.
Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):358-368. doi: 10.1007/s00259-023-06417-8. Epub 2023 Oct 3.
9
CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model.
Med Phys. 2024 Mar;51(3):1847-1859. doi: 10.1002/mp.16704. Epub 2023 Aug 30.
10
Adaptive diffusion priors for accelerated MRI reconstruction.
Med Image Anal. 2023 Aug;88:102872. doi: 10.1016/j.media.2023.102872. Epub 2023 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验