Suppr超能文献

使用增强相关系数最大化的参数图像对齐

Parametric image alignment using enhanced correlation coefficient maximization.

作者信息

Evangelidis Georgios D, Psarakis Emmanouil Z

机构信息

Signal Processing and Communications Lab, Department of Computer Engineering and Informatics, University of Patras, Rio-Patras, Greece.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Oct;30(10):1858-65. doi: 10.1109/TPAMI.2008.113.

Abstract

In this work we propose the use of a modified version of the correlation coefficient as a performance criterion for the image alignment problem. The proposed modification has the desirable characteristic of being invariant with respect to photometric distortions. Since the resulting similarity measure is a nonlinear function of the warp parameters, we develop two iterative schemes for its maximization, one based on the forward additive approach and the second on the inverse compositional method. As it is customary in iterative optimization, in each iteration, the nonlinear objective function is approximated by an alternative expression for which the corresponding optimization is simple. In our case we propose an efficient approximation that leads to a closed-form solution (per iteration) which is of low computational complexity, the latter property being particularly strong in our inverse version. The proposed schemes are tested against the Forward Additive Lucas-Kanade and the Simultaneous Inverse Compositional (SIC) algorithm through simulations. Under noisy conditions and photometric distortions, our forward version achieves more accurate alignments and exhibits faster convergence whereas our inverse version has similar performance as the SIC algorithm but at a lower computational complexity.

摘要

在这项工作中,我们建议使用相关系数的修改版本作为图像对齐问题的性能标准。所提出的修改具有对光度失真不变的理想特性。由于所得的相似性度量是 warp 参数的非线性函数,我们开发了两种迭代方案来最大化它,一种基于前向加法方法,另一种基于反向合成方法。正如迭代优化中的惯例,在每次迭代中,非线性目标函数由一个替代表达式近似,对于该表达式相应的优化很简单。在我们的案例中,我们提出了一种有效的近似方法,该方法导致一个封闭形式的解(每次迭代),其计算复杂度较低,后一个特性在我们的反向版本中尤为突出。通过模拟将所提出的方案与前向加法 Lucas-Kanade 算法和同时反向合成(SIC)算法进行了测试。在噪声条件和光度失真下,我们的前向版本实现了更精确的对齐并表现出更快的收敛速度,而我们的反向版本具有与 SIC 算法相似的性能,但计算复杂度更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验