Suppr超能文献

使用松弛有序子集算法的发射断层扫描全局收敛图像重建

Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms.

作者信息

Ahn Sangtae, Fessler Jeffrey A

机构信息

Electrical Engineering and Computer Science Department, University of Michigan, 4415 Electrical Engineering and Computer Science Building, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.

出版信息

IEEE Trans Med Imaging. 2003 May;22(5):613-26. doi: 10.1109/TMI.2003.812251.

Abstract

We present two types of globally convergent relaxed ordered subsets (OS) algorithms for penalized-likelihood image reconstruction in emission tomography: modified block sequential regularized expectation-maximization (BSREM) and relaxed OS separable paraboloidal surrogates (OS-SPS). The global convergence proof of the existing BSREM (De Pierro and Yamagishi, 2001) required a few a posteriori assumptions. By modifying the scaling functions of BSREM, we are able to prove the convergence of the modified BSREM under realistic assumptions. Our modification also makes stepsize selection more convenient. In addition, we introduce relaxation into the OS-SPS algorithm (Erdoğan and Fessler, 1999) that otherwise would converge to a limit cycle. We prove the global convergence of diagonally scaled incremental gradient methods of which the relaxed OS-SPS is a special case; main results of the proofs are from (Nedić and Bertsekas, 2001) and (Correa and Lemaréchal, 1993). Simulation results showed that both new algorithms achieve global convergence yet retain the fast initial convergence speed of conventional unrelaxed ordered subsets algorithms.

摘要

我们提出了两种用于发射断层扫描中惩罚似然图像重建的全局收敛松弛有序子集(OS)算法:改进的块序贯正则化期望最大化(BSREM)和松弛的OS可分离抛物面替代算法(OS-SPS)。现有BSREM(De Pierro和Yamagishi,2001)的全局收敛证明需要一些后验假设。通过修改BSREM的缩放函数,我们能够在现实假设下证明改进后的BSREM的收敛性。我们的修改也使步长选择更加方便。此外,我们将松弛引入OS-SPS算法(Erdoğan和Fessler,1999),否则该算法会收敛到一个极限环。我们证明了对角缩放增量梯度方法的全局收敛性,其中松弛的OS-SPS是一个特例;证明的主要结果来自(Nedić和Bertsekas,2001)以及(Correa和Lemaréchal,1993)。仿真结果表明,这两种新算法都实现了全局收敛,同时保留了传统非松弛有序子集算法快速的初始收敛速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验