Suppr超能文献

一种用于边缘保持 PET 图像重建的有序子集近端预条件梯度算法。

An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving PET image reconstruction.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland.

出版信息

Med Phys. 2013 May;40(5):052503. doi: 10.1118/1.4801898.

Abstract

PURPOSE

In iterative positron emission tomography (PET) image reconstruction, the statistical variability of the PET data precorrected for random coincidences or acquired in sufficiently high count rates can be properly approximated by a Gaussian distribution, which can lead to a penalized weighted least-squares (PWLS) cost function. In this study, the authors propose a proximal preconditioned gradient algorithm accelerated with ordered subsets (PPG-OS) for the optimization of the PWLS cost function and develop a framework to incorporate boundary side information into edge-preserving total variation (TV) and Huber regularizations.

METHODS

The PPG-OS algorithm is proposed to address two issues encountered in the optimization of PWLS function with edge-preserving regularizers. First, the second derivative of this function (Hessian matrix) is shift-variant and ill-conditioned due to the weighting matrix (which includes emission data, attenuation, and normalization correction factors) and the regularizer. As a result, the paraboloidal surrogate functions (used in the optimization transfer techniques) end up with high curvatures and gradient-based algorithms take smaller step-sizes toward the solution, leading to a slow convergence. In addition, preconditioners used to improve the condition number of the problem, and thus to speed up the convergence, would poorly act on the resulting ill-conditioned Hessian matrix. Second, the PWLS function with a nondifferentiable penalty such as TV is not amenable to optimization using gradient-based algorithms. To deal with these issues and also to enhance edge-preservation of the TV and Huber regularizers by incorporating adaptively or anatomically derived boundary side information, the authors followed a proximal splitting method. Thereby, the optimization of the PWLS function is split into a gradient descent step (upgraded by preconditioning, step size optimization, and ordered subsets) and a proximal mapping associated with boundary weighted TV and Huber regularizers. The proximal mapping is then iteratively solved by dual formulation of the regularizers.

RESULTS

The convergence performance of the proposed algorithm was studied with three different diagonal preconditioners and compared with the state-of-the-art separable paraboloidal surrogates accelerated with ordered-subsets (SPS-OS) algorithm. In simulation studies using a realistic numerical phantom, it was shown that the proposed algorithm depicts a considerably improved convergence rate over the SPS-OS algorithm. Furthermore, the results of bias-variance and signal-to-noise evaluations showed that the proposed algorithm with anatomical edge information depicts an improved performance over conventional regularization. Finally, the proposed PPG-OS algorithm is used for image reconstruction of a clinical study with adaptively derived boundary edge information, demonstrating the potential of the algorithm for fast and edge-preserving PET image reconstruction.

CONCLUSIONS

The proposed PPG-OS algorithm shows an improved convergence rate with the ability of incorporating additional boundary information in regularized PET image reconstruction.

摘要

目的

在迭代正电子发射断层成像(PET)图像重建中,经过随机符合或在足够高的计数率下采集的 PET 数据的统计可变性可以通过高斯分布来很好地近似,这可以导致惩罚加权最小二乘(PWLS)代价函数。在这项研究中,作者提出了一种带有有序子集的近预处理梯度算法(PPG-OS),用于优化 PWLS 代价函数,并开发了一种将边界侧信息纳入边缘保持全变差(TV)和 Huber 正则化的框架。

方法

提出了 PPG-OS 算法,以解决在具有边缘保持正则化的 PWLS 函数优化中遇到的两个问题。首先,由于加权矩阵(包括发射数据、衰减和归一化校正因子)和正则化,此函数的二阶导数(Hessian 矩阵)是移位变化和条件不良的。因此,抛物面替代函数(用于优化转移技术)的曲率较高,基于梯度的算法朝着解的方向迈出较小的步长,导致收敛速度较慢。此外,用于改善问题的条件数从而加速收敛的预条件器在处理由此产生的条件不良的 Hessian 矩阵时效果不佳。其次,具有非可微惩罚(如 TV)的 PWLS 函数不适用于基于梯度的算法进行优化。为了解决这些问题,并通过自适应或解剖学上得出的边界侧信息来增强 TV 和 Huber 正则化的边缘保持能力,作者采用了一种近分裂方法。因此,PWLS 函数的优化被分解为梯度下降步骤(通过预条件、步长优化和有序子集进行升级)和与边界加权 TV 和 Huber 正则化相关的近端映射。然后通过正则化的对偶公式迭代求解近端映射。

结果

使用三种不同的对角预条件器研究了所提出算法的收敛性能,并与最先进的带有序子集的可分离抛物面代理(SPS-OS)算法进行了比较。在使用实际数值体模的仿真研究中,结果表明,与 SPS-OS 算法相比,所提出的算法具有明显提高的收敛速度。此外,偏差方差和信噪比评估的结果表明,具有解剖边缘信息的所提出的算法在常规正则化方面表现出了改进的性能。最后,使用自适应得出的边界边缘信息对临床研究进行图像重建,证明了该算法用于快速和边缘保持的 PET 图像重建的潜力。

结论

所提出的 PPG-OS 算法在正则化 PET 图像重建中具有更好的收敛速度,并且能够结合额外的边界信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验