Suppr超能文献

基于非共线单倍型的玉米基因家族基因表达

Gene expression of a gene family in maize based on noncollinear haplotypes.

作者信息

Song Rentao, Messing Joachim

机构信息

Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020.

出版信息

Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9055-60. doi: 10.1073/pnas.1032999100. Epub 2003 Jul 9.

Abstract

Genomic regions of nearly every species diverged into different haplotypes, mostly based on point mutations, small deletions, and insertions that do not affect the collinearity of genes within a species. However, the same genomic interval containing the z1C gene cluster of two inbred lines of Zea mays significantly lost their gene collinearity and also differed in the regulation of each remaining gene set. Furthermore, when inbreds were reciprocally crossed, hybrids exhibited an unexpected shift of expression patterns so that "overdominance" instead of "dominance complementation" of allelic and nonallelic gene expression occurred. The same interval also differed in length (360 vs. 263 kb). Segmental rearrangements led to sequence changes, which were further enhanced by the insertion of different transposable elements. Changes in gene order affected not only z1C genes but also three unrelated genes. However, the orthologous interval between two subspecies of rice (not rice cultivars) was conserved in length and gene order, whereas changes between two maize inbreds were as drastic as changes between maize and sorghum. Given that chromosomes could conceivably consist of intervals of haplotypes that are highly diverged, one could envision endless breeding opportunities because of their linear arrangement along a chromosome and their expression potential in hybrid combinations ("binary" systems). The implication of such a hypothesis for heterosis is discussed.

摘要

几乎每个物种的基因组区域都分化成了不同的单倍型,主要基于点突变、小的缺失和插入,这些不会影响物种内基因的共线性。然而,包含玉米两个自交系的z1C基因簇的相同基因组区间显著丧失了它们的基因共线性,并且在每个剩余基因集的调控上也存在差异。此外,当自交系进行正反交时,杂种表现出意想不到的表达模式变化,以至于等位基因和非等位基因表达出现了“超显性”而非“显性互补”。相同区间的长度也不同(360对263 kb)。片段重排导致了序列变化,不同转座元件的插入进一步加剧了这种变化。基因顺序的改变不仅影响z1C基因,还影响三个不相关的基因。然而,水稻两个亚种(而非水稻品种)之间的直系同源区间在长度和基因顺序上是保守的,而两个玉米自交系之间的变化与玉米和高粱之间的变化一样剧烈。鉴于染色体可以想象为由高度分化的单倍型区间组成,由于它们沿着染色体的线性排列以及它们在杂种组合(“二元”系统)中的表达潜力,人们可以设想出无尽的育种机会。本文讨论了这一假设对杂种优势的意义。

相似文献

1
Gene expression of a gene family in maize based on noncollinear haplotypes.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9055-60. doi: 10.1073/pnas.1032999100. Epub 2003 Jul 9.
2
Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids.
Science. 2009 Nov 20;326(5956):1118-20. doi: 10.1126/science.1178294.
4
Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize.
Plant J. 2005 Sep;43(6):799-810. doi: 10.1111/j.1365-313X.2005.02497.x.
6
A first-generation haplotype map of maize.
Science. 2009 Nov 20;326(5956):1115-7. doi: 10.1126/science.1177837.
7
Relationship Between Differential Gene Expression and Heterosis During Ear Development in Maize (Zea mays L.).
J Genet Genomics. 2007 Feb;34(2):160-70. doi: 10.1016/S1673-8527(07)60017-4.
9
Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
Plant J. 2012 Oct;72(2):212-21. doi: 10.1111/j.1365-313X.2012.05059.x. Epub 2012 Aug 1.
10
Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes.
Cytogenet Genome Res. 2010 Jul;129(1-3):17-23. doi: 10.1159/000312724. Epub 2010 Jul 13.

引用本文的文献

1
Optimizing hybrid vigor: a comprehensive analysis of genetic distance and heterosis in eggplant landraces.
Front Plant Sci. 2023 Aug 31;14:1238870. doi: 10.3389/fpls.2023.1238870. eCollection 2023.
3
Dynamic patterns of gene expression and regulatory variation in the maize seed coat.
BMC Plant Biol. 2023 Feb 7;23(1):82. doi: 10.1186/s12870-023-04078-1.
4
A semi-parametric Bayesian approach for detection of gene expression heterosis with RNA-seq data.
J Appl Stat. 2021 Nov 25;50(1):214-230. doi: 10.1080/02664763.2021.2004581. eCollection 2023.
5
Nuclear-specific gene expression in heterokaryons of the filamentous ascomycete .
Proc Biol Sci. 2022 Aug 10;289(1980):20220971. doi: 10.1098/rspb.2022.0971.
7
Transcriptomic Variations and Network Hubs Controlling Seed Size and Weight During Maize Seed Development.
Front Plant Sci. 2022 Feb 14;13:828923. doi: 10.3389/fpls.2022.828923. eCollection 2022.
9
Revisiting Plant Heterosis-From Field Scale to Molecules.
Genes (Basel). 2021 Oct 24;12(11):1688. doi: 10.3390/genes12111688.
10
Tandem duplicate expression patterns are conserved between maize haplotypes of the -zein gene family.
Plant Direct. 2021 Sep 14;5(9):e346. doi: 10.1002/pld3.346. eCollection 2021 Sep.

本文引用的文献

1
The maize genome contains a helitron insertion.
Plant Cell. 2003 Feb;15(2):381-91. doi: 10.1105/tpc.008375.
3
Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize.
Plant Physiol. 2002 Dec;130(4):1626-35. doi: 10.1104/pp.012179.
4
Genetic, physical, and informatics resources for maize. On the road to an integrated map.
Plant Physiol. 2002 Dec;130(4):1598-605. doi: 10.1104/pp.012245.
5
Mosaic organization of orthologous sequences in grass genomes.
Genome Res. 2002 Oct;12(10):1549-55. doi: 10.1101/gr.268302.
6
Intraspecific violation of genetic colinearity and its implications in maize.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9573-8. doi: 10.1073/pnas.132259199. Epub 2002 Jun 11.
7
Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family.
Genome Res. 2001 Nov;11(11):1817-25. doi: 10.1101/gr.197301.
9
Interchromosomal recombination in Zea mays.
Genetics. 1998 Nov;150(3):1229-37. doi: 10.1093/genetics/150.3.1229.
10
The significance of digital gene expression profiles.
Genome Res. 1997 Oct;7(10):986-95. doi: 10.1101/gr.7.10.986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验