Letovsky Stanley, Kasif Simon
Bioinformatics Program and Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA 02215, USA.
Bioinformatics. 2003;19 Suppl 1:i197-204. doi: 10.1093/bioinformatics/btg1026.
The development of experimental methods for genome scale analysis of molecular interaction networks has made possible new approaches to inferring protein function. This paper describes a method of assigning functions based on a probabilistic analysis of graph neighborhoods in a protein-protein interaction network. The method exploits the fact that graph neighbors are more likely to share functions than nodes which are not neighbors. A binomial model of local neighbor function labeling probability is combined with a Markov random field propagation algorithm to assign function probabilities for proteins in the network.
We applied the method to a protein-protein interaction dataset for the yeast Saccharomyces cerevisiae using the Gene Ontology (GO) terms as function labels. The method reconstructed known GO term assignments with high precision, and produced putative GO assignments to 320 proteins that currently lack GO annotation, which represents about 10% of the unlabeled proteins in S. cerevisiae.
用于分子相互作用网络基因组规模分析的实验方法的发展,使得推断蛋白质功能的新方法成为可能。本文描述了一种基于蛋白质 - 蛋白质相互作用网络中图形邻域的概率分析来分配功能的方法。该方法利用了这样一个事实,即图形邻居比非邻居节点更有可能共享功能。局部邻居功能标记概率的二项式模型与马尔可夫随机场传播算法相结合,为网络中的蛋白质分配功能概率。
我们使用基因本体(GO)术语作为功能标签,将该方法应用于酿酒酵母的蛋白质 - 蛋白质相互作用数据集。该方法高精度地重建了已知的GO术语分配,并为目前缺乏GO注释的320种蛋白质产生了推测的GO分配,这约占酿酒酵母中未标记蛋白质的10%。