Suppr超能文献

在时间变化环境中的协同进化。

Coevolution in temporally variable environments.

作者信息

Nuismer Scott L, Gomulkiewicz Richard, Morgan Martin T

机构信息

1. Section of Integrative Biology C0930, University of Texas, Austin, Texas, 78712, USA.

出版信息

Am Nat. 2003 Aug;162(2):195-204. doi: 10.1086/376582. Epub 2003 Jun 16.

Abstract

Many potentially mutualistic interactions are conditional, with selection that varies between mutualism and antagonism over space and time. We develop a genetic model of temporally variable coevolution that incorporates stochastic fluctuations between mutualism and antagonism. We use this model to determine conditions necessary for the coevolution of matching traits between a host and a conditional mutualist. Using an analytical approximation, we show that matching traits will coevolve when the geometric mean interaction is mutualistic. When this condition does not hold, polymorphism and trait mismatching are maintained, and coevolutionary cycles may result. Numerical simulations verify this prediction and suggest that it remains robust in the presence of temporal autocorrelation. These results are compared with those from spatial models with unrestricted movement. The comparisons demonstrate that gene flow is unnecessary for generating empirical patterns predicted by the geographic mosaic theory of coevolution.

摘要

许多潜在的互利共生相互作用是有条件的,其选择在互利共生和对抗之间随空间和时间而变化。我们构建了一个时间可变共同进化的遗传模型,该模型纳入了互利共生和对抗之间的随机波动。我们使用这个模型来确定宿主与条件性互利共生者之间匹配性状共同进化所需的条件。通过解析近似,我们表明当几何平均相互作用是互利共生时,匹配性状将共同进化。当这个条件不成立时,多态性和性状不匹配会持续存在,并可能导致共同进化循环。数值模拟验证了这一预测,并表明在存在时间自相关的情况下它仍然稳健。这些结果与具有不受限制移动的空间模型的结果进行了比较。比较表明,基因流动对于产生协同进化地理镶嵌理论预测的经验模式并非必要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验