Suppr超能文献

Rad50复合物与Ku异源二聚体之间的竞争揭示了Exo1在处理双链断裂而非端粒方面的作用。

Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres.

作者信息

Tomita Kazunori, Matsuura Akira, Caspari Thomas, Carr Antony M, Akamatsu Yufuko, Iwasaki Hiroshi, Mizuno Ken-ichi, Ohta Kunihiro, Uritani Masahiro, Ushimaru Takashi, Yoshinaga Koichi, Ueno Masaru

机构信息

Department of Chemistry, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan.

出版信息

Mol Cell Biol. 2003 Aug;23(15):5186-97. doi: 10.1128/MCB.23.15.5186-5197.2003.

Abstract

The Mre11-Rad50-Nbs1(Xrs2) complex and the Ku70-Ku80 heterodimer are thought to compete with each other for binding to DNA ends. To investigate the mechanism underlying this competition, we analyzed both DNA damage sensitivity and telomere overhangs in Schizosaccharomyces pombe rad50-d, rad50-d pku70-d, rad50-d exo1-d, and pku70-d rad50-d exo1-d cells. We found that rad50 exo1 double mutants are more methyl methanesulfonate (MMS) sensitive than the respective single mutants. The MMS sensitivity of rad50-d cells was suppressed by concomitant deletion of pku70+. However, the MMS sensitivity of the rad50 exo1 double mutant was not suppressed by the deletion of pku70+. The G-rich overhang at telomere ends in taz1-d cells disappeared upon deletion of rad50+, but the overhang reappeared following concomitant deletion of pku70+. Our data suggest that the Rad50 complex can process DSB ends and telomere ends in the presence of the Ku heterodimer. However, the Ku heterodimer inhibits processing of DSB ends and telomere ends by alternative nucleases in the absence of the Rad50-Rad32 protein complex. While we have identified Exo1 as the alternative nuclease targeting DNA break sites, the identity of the nuclease acting on the telomere ends remains elusive.

摘要

Mre11-Rad50-Nbs1(Xrs2)复合物和Ku70-Ku80异二聚体被认为会相互竞争以结合DNA末端。为了研究这种竞争背后的机制,我们分析了粟酒裂殖酵母rad50-d、rad50-d pku70-d、rad50-d exo1-d和pku70-d rad50-d exo1-d细胞中的DNA损伤敏感性和端粒悬突。我们发现rad50 exo1双突变体比各自的单突变体对甲基磺酸甲酯(MMS)更敏感。rad50-d细胞对MMS的敏感性通过同时缺失pku70+而受到抑制。然而,rad50 exo1双突变体对MMS的敏感性并未因缺失pku70+而受到抑制。taz1-d细胞中端粒末端富含G的悬突在缺失rad50+后消失,但在同时缺失pku70+后悬突重新出现。我们的数据表明,在存在Ku异二聚体的情况下,Rad50复合物可以处理双链断裂末端和端粒末端。然而,在没有Rad50-Rad32蛋白复合物的情况下,Ku异二聚体通过替代核酸酶抑制双链断裂末端和端粒末端的处理。虽然我们已确定Exo1是靶向DNA断裂位点的替代核酸酶,但作用于端粒末端的核酸酶的身份仍然难以捉摸。

相似文献

5
Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast.
J Biol Chem. 2003 Jan 17;278(3):1924-31. doi: 10.1074/jbc.M208813200. Epub 2002 Nov 6.
6
Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe.
EMBO J. 2001 Jan 15;20(1-2):210-21. doi: 10.1093/emboj/20.1.210.
7
Human Ku70/80 protein blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50 protein complex.
J Biol Chem. 2012 Feb 10;287(7):4936-45. doi: 10.1074/jbc.M111.306167. Epub 2011 Dec 15.
10
Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks.
EMBO J. 2010 Oct 6;29(19):3370-80. doi: 10.1038/emboj.2010.219. Epub 2010 Sep 10.

引用本文的文献

1
Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks.
iScience. 2024 Jun 22;27(7):110373. doi: 10.1016/j.isci.2024.110373. eCollection 2024 Jul 19.
2
The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase.
Nucleic Acids Res. 2023 Feb 28;51(4):1783-1802. doi: 10.1093/nar/gkad062.
3
DNA Repair in Haploid Context.
Int J Mol Sci. 2021 Nov 17;22(22):12418. doi: 10.3390/ijms222212418.
4
Reconsidering pathway choice: a sequential model of mammalian DNA double-strand break pathway decisions.
Curr Opin Genet Dev. 2021 Dec;71:55-62. doi: 10.1016/j.gde.2021.06.011. Epub 2021 Jul 20.
6
Monitoring genome stress by visualizing end-binding protein Ku.
Biol Open. 2021 Feb 15;10(2):bio054346. doi: 10.1242/bio.054346.
7
CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
Plant Biotechnol J. 2021 Feb;19(2):230-239. doi: 10.1111/pbi.13490. Epub 2020 Nov 9.
8
FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku.
Nat Commun. 2020 Apr 24;11(1):2010. doi: 10.1038/s41467-020-15748-1.
9
An Assay to Study Intra-Chromosomal Deletions in Yeast.
Methods Protoc. 2019 Aug 26;2(3):74. doi: 10.3390/mps2030074.
10
Telomere-binding proteins Taz1 and Rap1 regulate DSB repair and suppress gross chromosomal rearrangements in fission yeast.
PLoS Genet. 2019 Aug 27;15(8):e1008335. doi: 10.1371/journal.pgen.1008335. eCollection 2019 Aug.

本文引用的文献

3
Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast.
J Biol Chem. 2003 Jan 17;278(3):1924-31. doi: 10.1074/jbc.M208813200. Epub 2002 Nov 6.
6
Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks.
J Biol Chem. 2002 Sep 6;277(36):32753-9. doi: 10.1074/jbc.M202120200. Epub 2002 Jun 25.
7
A single unbranched S-phase DNA damage and replication fork blockage checkpoint pathway.
Proc Natl Acad Sci U S A. 2002 May 28;99(11):7472-7. doi: 10.1073/pnas.112702399.
8
Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III.
Genes Dev. 2002 May 15;16(10):1195-208. doi: 10.1101/gad.221402.
10
The Mre11 complex: at the crossroads of dna repair and checkpoint signalling.
Nat Rev Mol Cell Biol. 2002 May;3(5):317-27. doi: 10.1038/nrm805.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验