Suppr超能文献

Giant cell tumor of bone. The role of fibroblast growth factor 3 positive mesenchymal stem cells in its pathogenesis.

作者信息

Robinson Dror, Segal Michael, Nevo Zvi

机构信息

Department of Orthopedics A Assaf Harofeh Medical Center, Zerifin, Israel.

出版信息

Pathobiology. 2002;70(6):333-42. doi: 10.1159/000071273.

Abstract

OBJECTIVES

Giant cell tumor of bone is typified by massive infiltration of a bland neoplastic stroma by osteoclasts and monocyte progenitors. The current study aimed at evaluating the nature of the neoplastic cells and the mechanisms underlying the massive giant cell recruitment.

METHODS

Five different giant cell tumors were evaluated by immunohistochemistry, and explant cell cultures were established from the same tumors. Antigen expression profiles of both the tumors and the derived cultures were assessed. In order to determine if the mesenchymal cells are capable of differentiating into mature osteoblasts, retinoic acid was added to cell cultures and osteocalcin and alkaline phosphatase levels were measured. The proliferative effects of the mesenchymal cells on histiocyte-like cells were evaluated using the U-937 cell line.

RESULTS

A large stromal subpopulation expresses fibroblast growth factor receptor 3 (FGF-R3), indicating a mesenchymal origin of these cells. Few cells express bone- or cartilage-specific markers. Cell cultures are predominated by mesenchymal cells, as indicated by a strong staining by FGF R3. Retinoic acid induces osteoblastic differentiation, i.e. osteocalcin expression and alkaline phosphatase production. Conditioned medium of giant-cell-tumor-derived stromal cell cultures induces proliferation of U-937 cells, derived from histiocytic lymphoma. Papain digestion and dialysis of the conditioned media indicates the effector molecule to be a protein over 40 kD in size. The giant cell tumors as well as stromal cell cultures derived from giant cell tumors express osteoprotegerin ligand, the osteoclast activator.

CONCLUSIONS

The neoplastic stromal spindle-shaped subpopulation of cells in giant cell tumors are mesenchymal stem cells capable of inducing histiocyte proliferation. Retinoid acid is capable of inducing differentiation of the cells into mature osteoblasts. This should be further investigated in an in vivo model to ascertain whether induction of differentiation will prevent bone loss and retard tumor progression.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验