Haveman Shelley A, Brunelle Véronique, Voordouw Johanna K, Voordouw Gerrit, Heidelberg John F, Rabus Ralf
Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
J Bacteriol. 2003 Aug;185(15):4345-53. doi: 10.1128/JB.185.15.4345-4353.2003.
Comparison of the proteomes of the wild-type and Fe-only hydrogenase mutant strains of Desulfovibrio vulgaris Hildenborough, grown in lactate-sulfate (LS) medium, indicated the near absence of open reading frame 2977 (ORF2977)-coded alcohol dehydrogenase in the hyd mutant. Hybridization of labeled cDNA to a macroarray of 145 PCR-amplified D. vulgaris genes encoding proteins active in energy metabolism indicated that the adh gene was among the most highly expressed in wild-type cells grown in LS medium. Relative to the wild type, expression of the adh gene was strongly downregulated in the hyd mutant, in agreement with the proteomic data. Expression was upregulated in ethanol-grown wild-type cells. An adh mutant was constructed and found to be incapable of growth in media in which ethanol was both the carbon source and electron donor for sulfate reduction or was only the carbon source, with hydrogen serving as electron donor. The hyd mutant also grew poorly on ethanol, in agreement with its low level of adh gene expression. The adh mutant grew to a lower final cell density on LS medium than the wild type. These results, as well as the high level of expression of adh in wild-type cells on media in which lactate, pyruvate, formate, or hydrogen served as the sole electron donor for sulfate reduction, indicate that ORF2977 Adh contributes to the energy metabolism of D. vulgaris under a wide variety of metabolic conditions. A hydrogen cycling mechanism is proposed in which protons and electrons originating from cytoplasmic ethanol oxidation by ORF2977 Adh are converted to hydrogen or hydrogen equivalents, possibly by a putative H(2)-heterodisulfide oxidoreductase complex, which is then oxidized by periplasmic Fe-only hydrogenase to generate a proton gradient.
对在乳酸 - 硫酸盐(LS)培养基中生长的野生型和仅含铁氢化酶突变株的脱硫弧菌希登伯勒菌株的蛋白质组进行比较,结果表明在氢化酶突变体中几乎不存在开放阅读框2977(ORF2977)编码的乙醇脱氢酶。将标记的cDNA与145个编码参与能量代谢的蛋白质的PCR扩增的脱硫弧菌基因的宏阵列杂交,结果表明adh基因在LS培养基中生长的野生型细胞中是表达量最高的基因之一。相对于野生型,adh基因的表达在氢化酶突变体中被强烈下调,这与蛋白质组学数据一致。在以乙醇为碳源的野生型细胞中,adh基因的表达上调。构建了一个adh突变体,发现其在乙醇既是硫酸盐还原的碳源又是电子供体或仅是碳源、氢气作为电子供体的培养基中无法生长。氢化酶突变体在乙醇上的生长也很差,这与其低水平的adh基因表达一致。adh突变体在LS培养基上生长到的最终细胞密度低于野生型。这些结果,以及在乳酸、丙酮酸、甲酸或氢气作为硫酸盐还原的唯一电子供体的培养基中野生型细胞中adh基因的高表达水平,表明ORF2977 Adh在多种代谢条件下对脱硫弧菌的能量代谢有贡献。提出了一种氢循环机制,其中由ORF2977 Adh对细胞质乙醇氧化产生的质子和电子可能通过一种假定的H(2)-异二硫化物氧化还原酶复合物转化为氢气或氢当量,然后被周质仅含铁氢化酶氧化以产生质子梯度。