Grant P J
Academic Unit of Molecular Vascular Medicine, University of Leeds School of Medicine, Leeds, UK.
J Thromb Haemost. 2003 Jul;1(7):1381-90. doi: 10.1046/j.1538-7836.2003.00276.x.
The development of coronary artery disease is dependent on the interaction of multiple biochemical pathways that lead to the development of plaque in the arterial wall and ultimately plaque instability, plaque rupture and thrombosis. The latter stages lead to vascular obstruction, tissue death and the final phenotype of myocardial infarction. Hemostasis gene association studies of atherothrombotic disorders have been unrewarding, with largely underpowered studies reporting inconsistent results. Clinical studies such as the Multiple Risk Factor Intervention Trial clearly indicate that clustering of classical risk increases the likelihood of myocardial infarction, and the addition of diabetes mellitus to the risk profile exponentially increases the risk of a vascular event. The development of insulin resistance is considered to be a pivotal event in vascular risk with associated clustering of dysglycemia, hyperinsulinemia, systolic hypertension, raised triglyceride and low high-density lipoprotein cholesterol. Additionally, elevated levels of plasminogen activator inhibitor-1, factor (F)VII, FXII, fibrinogen and tissue plasminogen activator occur with insulin resistance to create an atherothrombotic risk cluster. Heritability studies of insulin resistance and the vascular risk profile demonstrate genetic pleitropy between diabetes and vascular risk, which indicate that common genes have an important role. Increasingly, it is felt that inflammation underpins both diabetes and cardiovascular disease and that the expression of the final phenotype(s) may depend on complex gene-environment interactions with regulatory genes, including those for nuclear transcription factors and RNA-binding proteins. The complexity of coronary artery disease and the risk factor interactions make it unlikely that genetic epidemiology will identify genes involved in these processes without a better understanding of environmental influences.
冠状动脉疾病的发展取决于多种生化途径的相互作用,这些途径会导致动脉壁斑块的形成,并最终导致斑块不稳定、斑块破裂和血栓形成。后几个阶段会导致血管阻塞、组织死亡以及心肌梗死的最终表现型。对动脉粥样硬化血栓形成性疾病的止血基因关联研究一直没有取得成果,大多研究力度不足,结果也不一致。诸如多重危险因素干预试验等临床研究清楚地表明,经典危险因素的聚集会增加心肌梗死的可能性,而在危险因素中加入糖尿病会使血管事件的风险呈指数级增加。胰岛素抵抗的发展被认为是血管风险中的一个关键事件,伴有血糖异常、高胰岛素血症、收缩期高血压、甘油三酯升高和高密度脂蛋白胆固醇降低的聚集。此外,纤溶酶原激活物抑制剂-1、因子(F)VII、FXII、纤维蛋白原和组织纤溶酶原激活物水平升高与胰岛素抵抗同时出现,形成动脉粥样硬化血栓形成风险聚集。胰岛素抵抗和血管风险特征的遗传力研究表明糖尿病和血管风险之间存在基因多效性,这表明常见基因起着重要作用。人们越来越觉得炎症是糖尿病和心血管疾病的基础,最终表现型的表达可能取决于与调节基因(包括核转录因子和RNA结合蛋白的基因)的复杂基因-环境相互作用。冠状动脉疾病的复杂性和危险因素的相互作用使得如果没有对环境影响有更好的理解,遗传流行病学不太可能识别出参与这些过程的基因。