Suppr超能文献

Msh2功能分离突变在错配修复起始步骤中导致缺陷。

Msh2 separation of function mutations confer defects in the initiation steps of mismatch repair.

作者信息

Kijas Amanda Wraith, Studamire Barbara, Alani Eric

机构信息

Department of Molecular Biology and Genetics, Cornell University, 459 Biotech Building, Ithaca, NY 14853-2703, USA.

出版信息

J Mol Biol. 2003 Aug 1;331(1):123-38. doi: 10.1016/s0022-2836(03)00694-6.

Abstract

In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.

摘要

在真核生物中,MSH2-MSH3和MSH2-MSH6异二聚体通过识别并结合DNA错配来启动错配修复(MMR)。然后,MLH1-PMS1异二聚体在错配位点处或其附近与MSH蛋白相互作用,并被认为作为介质募集下游修复蛋白。在此,我们分析了五个msh2突变体,它们在双链断裂修复过程中能够去除3'非同源尾巴,但在MMR中完全缺陷。由于去除非同源尾巴不需要MSH6、MLH1或PMS1的功能,因此对msh2功能分离等位基因的表征应该能够深入了解MMR的早期步骤。以Taq MutS晶体结构为模型,发现三个msh2突变,即msh2-S561P、msh2-K564E、msh2-G566D,定位于MutS中参与稳定错配结合的结构域。凝胶迁移率变动分析和DNase I足迹分析表明,其中两个突变对MSH2-MSH6错配结合造成了严重缺陷。另外两个突变,msh2-S656P和msh2-R730W,定位于ATP酶结构域。DNase I足迹分析、ATP水解、ATP结合和MLH1-PMS1相互作用分析表明,msh2-S656P突变导致MSH2-MSH6从错配DNA上进行ATP依赖解离以及MSH2-MSH6与MLH1-PMS1之间相互作用出现缺陷。相比之下,msh2-R730W突变破坏了MSH2-MSH6的ATP酶活性,但没有强烈影响ATP结合或与MLH1-PMS1的相互作用。这些结果支持了一个模型,即MMR可以分解为离散的步骤:稳定的错配结合与感知、MLH1-PMS1募集以及MMR组件的循环利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验