Kijas Amanda Wraith, Studamire Barbara, Alani Eric
Department of Molecular Biology and Genetics, Cornell University, 459 Biotech Building, Ithaca, NY 14853-2703, USA.
J Mol Biol. 2003 Aug 1;331(1):123-38. doi: 10.1016/s0022-2836(03)00694-6.
In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.
在真核生物中,MSH2-MSH3和MSH2-MSH6异二聚体通过识别并结合DNA错配来启动错配修复(MMR)。然后,MLH1-PMS1异二聚体在错配位点处或其附近与MSH蛋白相互作用,并被认为作为介质募集下游修复蛋白。在此,我们分析了五个msh2突变体,它们在双链断裂修复过程中能够去除3'非同源尾巴,但在MMR中完全缺陷。由于去除非同源尾巴不需要MSH6、MLH1或PMS1的功能,因此对msh2功能分离等位基因的表征应该能够深入了解MMR的早期步骤。以Taq MutS晶体结构为模型,发现三个msh2突变,即msh2-S561P、msh2-K564E、msh2-G566D,定位于MutS中参与稳定错配结合的结构域。凝胶迁移率变动分析和DNase I足迹分析表明,其中两个突变对MSH2-MSH6错配结合造成了严重缺陷。另外两个突变,msh2-S656P和msh2-R730W,定位于ATP酶结构域。DNase I足迹分析、ATP水解、ATP结合和MLH1-PMS1相互作用分析表明,msh2-S656P突变导致MSH2-MSH6从错配DNA上进行ATP依赖解离以及MSH2-MSH6与MLH1-PMS1之间相互作用出现缺陷。相比之下,msh2-R730W突变破坏了MSH2-MSH6的ATP酶活性,但没有强烈影响ATP结合或与MLH1-PMS1的相互作用。这些结果支持了一个模型,即MMR可以分解为离散的步骤:稳定的错配结合与感知、MLH1-PMS1募集以及MMR组件的循环利用。