Suppr超能文献

错配和双链断裂修复在 Msh3 核苷酸结合口袋内的不同需求。

Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair.

机构信息

Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14214, USA.

Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14214, USA.

出版信息

J Mol Biol. 2013 Jun 12;425(11):1881-1898. doi: 10.1016/j.jmb.2013.02.024. Epub 2013 Feb 28.

Abstract

In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3' non-homologous tail removal (3' NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3' NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well-conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3' NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3' NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest that the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3' NHTR.

摘要

在酿酒酵母中,插入/缺失环的修复是由 Msh2-Msh3 介导的错配修复 (MMR) 完成的。Msh2-Msh3 也需要双链断裂修复中的 3'非同源末端切除 (3' NHTR)。在这两种途径中,Msh2-Msh3 结合双链/单链接头,并以 ATP 依赖性方式启动修复。然而,这两个过程的动力学似乎不同;MMR 可能很快,以便与复制叉协调,而 3' NHTR 已被证明是一个较慢的过程。为了了解两种修复途径中的分子要求,我们对 Msh3 中保守残基进行了体内分析,这些残基被假设是 MMR 和/或 3' NHTR 所必需的。这些残基预计参与复合物中 DNA 结合和 ATP 酶结构域之间的通讯,或 Msh2-Msh3 中的核苷酸结合和/或交换。我们在预测的 Msh3 核苷酸结合口袋的 FLY 基序内鉴定了一组芳香族残基,这些残基对于 Msh2-Msh3 介导的 MMR 是必需的,但对于 3' NHTR 则基本可有可无。相比之下,其他区域的突变在两种测定中都产生了相似的表型。基于这些结果,我们认为这两种途径在结合的 ATP 在 Msh3 中的位置上具有不同的要求。我们提出,差异至少部分与每个途径的动力学有关。正确结合和定位 ATP 是在复制叉处诱导快速构象变化所必需的,但在有更多时间进行修复时,如在 3' NHTR 中,这并不那么重要。

相似文献

引用本文的文献

7

本文引用的文献

7
Human MSH2 (hMSH2) protein controls ATP processing by hMSH2-hMSH6.人 MSH2(hMSH2)蛋白通过 hMSH2-hMSH6 控制 ATP 加工。
J Biol Chem. 2011 Nov 18;286(46):40287-95. doi: 10.1074/jbc.M111.297523. Epub 2011 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验