Suppr超能文献

用于分子靶点高通量评估的染色组织微阵列的自动化采集

Automated acquisition of stained tissue microarrays for high-throughput evaluation of molecular targets.

作者信息

Vrolijk Hans, Sloos Willem, Mesker Wilma, Franken Patrick, Fodde Riccardo, Morreau Hans, Tanke Hans

机构信息

Laboratory for Cytochemistry and Cytometry, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

J Mol Diagn. 2003 Aug;5(3):160-7. doi: 10.1016/S1525-1578(10)60468-0.

Abstract

At present, limiting factors in the use of tissue microarrays (TMAs) for high-throughput analysis relate to the visual evaluation of the staining patterns of each of the individual cores in the array and to the subsequent input of the results into a database. Such a database is essential to correlate the data with tumor type and outcome, and to evaluate the performance against other markers achieved in separate experiments. So far, these steps are mostly performed by hand, and consequently are time-consuming and potentially prone to bias and errors, respectively. This paper describes the use of a high-resolution flat-bed scanner for digitization of TMAs with a resolution of about 5 x 5 micro m(2). The arrays are acquired, the positions of the tissue cores are automatically determined, and measurement data including the images of the individual cores are archived. The program provides digital zooming of arrays for interactive verification of the results and rapid linkage of individual core images to data sets of other markers derived from the same array. Performance of the system was compared to manual classification for a representative set of arrays containing colorectal tumors stained with different markers.

摘要

目前,在使用组织微阵列(TMA)进行高通量分析时,限制因素涉及对阵列中每个单独核心的染色模式进行视觉评估,以及随后将结果输入数据库。这样的数据库对于将数据与肿瘤类型和结果相关联,以及评估与在单独实验中获得的其他标志物相比的性能至关重要。到目前为止,这些步骤大多是手工执行的,因此分别耗时且可能容易出现偏差和错误。本文描述了使用高分辨率平板扫描仪对TMA进行数字化处理,分辨率约为5×5微米²。获取阵列,自动确定组织核心的位置,并存档包括各个核心图像在内的测量数据。该程序提供阵列的数字缩放功能,用于交互式验证结果,并将单个核心图像快速链接到来自同一阵列的其他标志物的数据集。对于一组包含用不同标志物染色的结肠直肠肿瘤的代表性阵列,将该系统的性能与手动分类进行了比较。

相似文献

引用本文的文献

1
Incorporating Deep Features in the Analysis of Tissue Microarray Images.将深度特征纳入组织微阵列图像分析中。
Stat Interface. 2019;12(2):283-293. doi: 10.4310/sii.2019.v12.n2.a9. Epub 2019 Mar 11.
5
Novel translational strategies in colorectal cancer research.结直肠癌研究中的新型转化策略。
World J Gastroenterol. 2007 Nov 28;13(44):5902-10. doi: 10.3748/wjg.v13.i44.5902.
6
The Stanford Tissue Microarray Database.斯坦福组织微阵列数据库。
Nucleic Acids Res. 2008 Jan;36(Database issue):D871-7. doi: 10.1093/nar/gkm861. Epub 2007 Nov 7.

本文引用的文献

5
Gene-expression profiles in hereditary breast cancer.遗传性乳腺癌中的基因表达谱
N Engl J Med. 2001 Feb 22;344(8):539-48. doi: 10.1056/NEJM200102223440801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验