Suppr超能文献

基于结构的表型分析可预测HIV-1蛋白酶抑制剂耐药性。

Structure-based phenotyping predicts HIV-1 protease inhibitor resistance.

作者信息

Shenderovich Mark D, Kagan Ron M, Heseltine Peter N R, Ramnarayan Kal

机构信息

Cengent Therapeutics Inc., 10929 Technology Place, San Diego, CA 92127, USA.

出版信息

Protein Sci. 2003 Aug;12(8):1706-18. doi: 10.1110/ps.0301103.

Abstract

Mutations in HIV-1 drug targets lead to resistance and consequent therapeutic failure of antiretroviral drugs. Phenotypic resistance assays are time-consuming and costly, and genotypic rules-based interpretations may fail to predict the effects of multiple mutations. We have developed a computational procedure that rapidly evaluates changes in the binding energy of inhibitors to mutant HIV-1 PR variants. Models of WT complexes were produced from crystal structures. Mutant complexes were built by amino acid substitutions in the WT complexes with subsequent energy minimization of the ligand and PR binding site residues. Accuracy of the models was confirmed by comparison with available crystal structures and by prediction of known resistance-related mutations. PR variants from clinical isolates were modeled in complex with six FDA-approved PIs, and changes in the binding energy (DeltaE(bind)) of mutant versus WT complexes were correlated with the ratios of phenotypic 50% inhibitory concentration (IC(50)) values. The calculated DeltaE(bind) of five PIs showed significant correlations (R(2) = 0.7-0.8) with IC(50) ratios from the Virco Antivirogram assay, and the DeltaE(bind) of six PIs showed good correlation (R(2) = 0.76-0.85) with IC(50) ratios from the Virologic PhenoSense assay. DeltaE(bind) cutoffs corresponding to a four-fold increase in IC(50) were used to define the structure-based phenotype as susceptible, resistant, or equivocal. Blind predictions for 78 PR variants gave overall agreement of 92% (kappa = 0.756) and 86% (kappa = 0.666) with PhenoSense and Antivirogram phenotypes, respectively. The structural phenotyping predicted drug resistance of clinical HIV-1 PR variants with an accuracy approaching that of frequently used cell-based phenotypic assays.

摘要

HIV-1药物靶点的突变会导致抗逆转录病毒药物产生耐药性并进而导致治疗失败。表型耐药性检测既耗时又昂贵,而基于基因型规则的解释可能无法预测多个突变的影响。我们开发了一种计算程序,可快速评估抑制剂与突变型HIV-1蛋白酶(PR)变体结合能的变化。野生型(WT)复合物模型由晶体结构生成。通过在WT复合物中进行氨基酸替换,随后对配体和PR结合位点残基进行能量最小化,构建突变体复合物。通过与可用晶体结构进行比较以及对已知耐药相关突变的预测,证实了模型的准确性。对来自临床分离株的PR变体与六种FDA批准的蛋白酶抑制剂(PI)形成的复合物进行建模,突变体与WT复合物结合能的变化(ΔE(bind))与表型50%抑制浓度(IC(50))值的比率相关。五种PI计算得到的ΔE(bind)与Virco Antivirogram检测的IC(50)比率显示出显著相关性(R(2)=0.7 - 0.8),六种PI的ΔE(bind)与Virologic PhenoSense检测的IC(50)比率显示出良好相关性(R(2)=0.76 - 0.85)。对应于IC(50)增加四倍的ΔE(bind)临界值用于将基于结构的表型定义为敏感、耐药或不确定。对78个PR变体的盲法预测与PhenoSense和Antivirogram表型的总体一致性分别为92%(kappa = 0.756)和86%(kappa = 0.666)。结构表型分析预测临床HIV-1 PR变体耐药性的准确性接近常用的基于细胞的表型检测。

相似文献

引用本文的文献

2
Molecular dynamics simulation in virus research.病毒研究中的分子动力学模拟
Front Microbiol. 2012 Jul 19;3:258. doi: 10.3389/fmicb.2012.00258. eCollection 2012.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验