Suppr超能文献

酵母将木糖生物转化过程中的乙醇与耐热性

Ethanol and thermotolerance in the bioconversion of xylose by yeasts.

作者信息

Jeffries T W, Jin Y S

机构信息

Institute for Microbial and Biochemical Technology, Forest Service, Forest Products Laboratory, United States Department of Agriculture, Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA.

出版信息

Adv Appl Microbiol. 2000;47:221-68. doi: 10.1016/s0065-2164(00)47006-1.

Abstract

The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are particularly detrimental to xylose-fermenting yeasts because they require oxygen for biosynthesis of essential cell membrane and nucleic acid constituents, and they depend on respiration for the generation of ATP. Physiological responses to ethanol and heat shock have been studied most extensively in S. cerevisiae. However, comparative biochemical studies with other organisms suggest that similar mechanisms will be important in xylose-fermenting yeasts. The composition of a cell's membrane lipids shifts with temperature, ethanol concentration, and stage of cultivation. Levels of unsaturated fatty acids and ergosterol increase in response to temperature and ethanol stress. Inositol is involved in phospholipid biosynthesis, and it can increase ethanol tolerance when provided as a supplement. Membrane integrity determines the cell's ability to maintain proton gradients for nutrient uptake. Plasma membrane ATPase generates the proton gradient, and the biochemical characteristics of this enzyme contribute to ethanol tolerance. Organisms with higher ethanol tolerance have ATPase activities with low pH optima and high affinity for ATP. Likewise, organisms with ATPase activities that resist ethanol inhibition also function better at high ethanol concentrations. ATPase consumes a significant fraction of the total cellular ATP, and under stress conditions when membrane gradients are compromised the activity of ATPase is regulated. In xylose-fermenting yeasts, the carbon source used for growth affects both ATPase activity and ethanol tolerance. Cells can adapt to heat and ethanol stress by synthesizing trehalose and heat-shock proteins, which stabilize and repair denatured proteins. The capacity of cells to produce trehalose and induce HSPs correlate with their thermotolerance. Both heat and ethanol increase the frequency of petite mutations and kill cells. This might be attributable to membrane effects, but it could also arise from oxidative damage. Cytoplasmic and mitochondrial superoxide dismutases can destroy oxidative radicals and thereby maintain cell viability. Improved knowledge of the mechanisms underlying ethanol and thermotolerance in S. cerevisiae should enable the genetic engineering of these traits in xylose-fermenting yeasts.

摘要

乙醇耐受性和耐热性背后的机制很复杂。涉及许多不同的基因,确切的基础尚未完全了解。细胞质膜和线粒体膜的完整性对于维持代谢能量和营养物质摄取所需的质子梯度至关重要。热应激和乙醇应激会对膜的完整性产生不利影响。这些因素对木糖发酵酵母尤其有害,因为它们需要氧气来合成必需的细胞膜和核酸成分,并且它们依赖呼吸作用来产生ATP。在酿酒酵母中,对乙醇应激和热休克的生理反应已得到最广泛的研究。然而,与其他生物体的比较生化研究表明,类似的机制在木糖发酵酵母中也很重要。细胞膜脂质的组成会随温度、乙醇浓度和培养阶段而变化。不饱和脂肪酸和麦角固醇的水平会因温度和乙醇应激而增加。肌醇参与磷脂生物合成,作为补充剂提供时可提高乙醇耐受性。膜的完整性决定了细胞维持营养物质摄取所需质子梯度的能力。质膜ATP酶产生质子梯度,该酶的生化特性有助于乙醇耐受性。乙醇耐受性较高的生物体具有在低pH最适值下具有活性且对ATP具有高亲和力的ATP酶。同样,具有抗乙醇抑制的ATP酶活性的生物体在高乙醇浓度下也能更好地发挥作用。ATP酶消耗细胞总ATP的很大一部分,在应激条件下,当膜梯度受损时,ATP酶的活性会受到调节。在木糖发酵酵母中,用于生长的碳源会影响ATP酶活性和乙醇耐受性。细胞可以通过合成海藻糖和热休克蛋白来适应热应激和乙醇应激,这些蛋白可以稳定和修复变性的蛋白质。细胞产生海藻糖和诱导热休克蛋白的能力与其耐热性相关。热应激和乙醇应激都会增加小菌落突变的频率并杀死细胞。这可能归因于膜效应,但也可能源于氧化损伤。细胞质和线粒体超氧化物歧化酶可以破坏氧化自由基,从而维持细胞活力。深入了解酿酒酵母中乙醇耐受性和耐热性的机制,应该能够对木糖发酵酵母的这些特性进行基因工程改造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验