Suppr超能文献

可持续生物乙醇生产中的酵母:综述

Yeasts in sustainable bioethanol production: A review.

作者信息

Mohd Azhar Siti Hajar, Abdulla Rahmath, Jambo Siti Azmah, Marbawi Hartinie, Gansau Jualang Azlan, Mohd Faik Ainol Azifa, Rodrigues Kenneth Francis

机构信息

Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.

Energy Research Unit, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.

出版信息

Biochem Biophys Rep. 2017 Mar 6;10:52-61. doi: 10.1016/j.bbrep.2017.03.003. eCollection 2017 Jul.

Abstract

Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

摘要

生物乙醇已被确定为全球使用最广泛的生物燃料,因为它对减少原油消耗和环境污染有显著贡献。它可以通过微生物发酵过程,由各种原料如蔗糖、淀粉、木质纤维素和藻类生物质生产。与其他类型的微生物相比,酵母尤其是乙醇生产中常用的微生物,因为它具有高乙醇生产率、高乙醇耐受性以及发酵多种糖类的能力。然而,酵母发酵存在一些抑制乙醇生产的挑战,如高温、高乙醇浓度以及发酵戊糖的能力。各种类型的酵母菌株已用于乙醇生产的发酵,包括杂交酵母、重组酵母和野生型酵母。酵母可以直接将单糖发酵成乙醇,而其他类型的原料必须先转化为可发酵糖才能发酵成乙醇。乙醇生产的常见过程包括预处理、水解和发酵。发酵过程中生物乙醇的产量取决于几个因素,如温度、糖浓度、pH值、发酵时间、搅拌速度和接种量。固定化酵母细胞可以提高乙醇的效率和生产率。本综述重点介绍了不同类型的酵母菌株、发酵过程、影响生物乙醇生产的因素以及酵母固定化以实现更好的生物乙醇生产。

相似文献

1
Yeasts in sustainable bioethanol production: A review.
Biochem Biophys Rep. 2017 Mar 6;10:52-61. doi: 10.1016/j.bbrep.2017.03.003. eCollection 2017 Jul.
2
Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol.
Biotechnol Adv. 2023 Mar-Apr;63:108100. doi: 10.1016/j.biotechadv.2023.108100. Epub 2023 Jan 17.
3
Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
J Biosci Bioeng. 2017 Mar;123(3):342-346. doi: 10.1016/j.jbiosc.2016.10.007. Epub 2016 Nov 14.
6
Challenges for the production of bioethanol from biomass using recombinant yeasts.
Adv Appl Microbiol. 2015;92:89-125. doi: 10.1016/bs.aambs.2015.02.003. Epub 2015 Mar 23.
7
Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
Appl Biochem Biotechnol. 2012 Jun;167(4):873-84. doi: 10.1007/s12010-012-9705-9. Epub 2012 May 26.
8
Towards industrial pentose-fermenting yeast strains.
Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53. doi: 10.1007/s00253-006-0827-2. Epub 2007 Feb 9.
10
Current state-of-the-art in ethanol production from lignocellulosic feedstocks.
Microbiol Res. 2020 Nov;240:126534. doi: 10.1016/j.micres.2020.126534. Epub 2020 Jun 27.

引用本文的文献

1
3
Sustainable Fuel Additives Derived from Renewable Resources: Promising Strategies for a Greener Future.
ACS Omega. 2025 May 7;10(19):19256-19282. doi: 10.1021/acsomega.4c11343. eCollection 2025 May 20.
6
Lactic Acid Bacteria and Yeast Fermentation to Improve the Nutritional Value of .
Mar Drugs. 2025 Feb 28;23(3):106. doi: 10.3390/md23030106.
7
Recent advances in genetic engineering and chemical production in yeast species.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf009.
8
An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation.
Appl Microbiol Biotechnol. 2025 Mar 12;109(1):64. doi: 10.1007/s00253-025-13447-9.

本文引用的文献

2
Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater.
J Environ Health Sci Eng. 2014 Sep 25;12:107. doi: 10.1186/2052-336X-12-107. eCollection 2014.
3
Bioethanol from lignocellulosic biomass: current findings determine research priorities.
ScientificWorldJournal. 2014;2014:298153. doi: 10.1155/2014/298153. Epub 2014 Dec 31.
4
Yeast alcohol dehydrogenase structure and catalysis.
Biochemistry. 2014 Sep 16;53(36):5791-803. doi: 10.1021/bi5006442. Epub 2014 Sep 3.
5
Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production.
Appl Biochem Biotechnol. 2014 Sep;174(1):28-42. doi: 10.1007/s12010-014-1006-z. Epub 2014 Jun 8.
6
Bioethanol production from fermentable sugar juice.
ScientificWorldJournal. 2014 Mar 12;2014:957102. doi: 10.1155/2014/957102. eCollection 2014.
7
Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17.
Bioprocess Biosyst Eng. 2014 Sep;37(9):1871-8. doi: 10.1007/s00449-014-1161-1. Epub 2014 Mar 11.
8
Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system.
Bioresour Technol. 2014 Apr;158:286-93. doi: 10.1016/j.biortech.2014.02.022. Epub 2014 Feb 15.
9
Production of bioethanol and biodiesel using instant noodle waste.
Bioprocess Biosyst Eng. 2014 Aug;37(8):1627-35. doi: 10.1007/s00449-014-1135-3. Epub 2014 Feb 11.
10
Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature.
Springerplus. 2012 Oct 4;1:27. doi: 10.1186/2193-1801-1-27. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验