Suppr超能文献

一种基于神经解剖学和细胞构筑图谱的功能磁共振成像数据集自动查询方法。

An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.

作者信息

Maldjian Joseph A, Laurienti Paul J, Kraft Robert A, Burdette Jonathan H

机构信息

Department of Radiology, Wake Forest University Health Sciences Center, Winston-Salem, NC 27157, USA.

出版信息

Neuroimage. 2003 Jul;19(3):1233-9. doi: 10.1016/s1053-8119(03)00169-1.

Abstract

Analysis and interpretation of functional MRI (fMRI) data have traditionally been based on identifying areas of significance on a thresholded statistical map of the entire imaged brain volume. This form of analysis can be likened to a "fishing expedition." As we become more knowledgeable about the structure-function relationships of different brain regions, tools for a priori hypothesis testing are needed. These tools must be able to generate region of interest masks for a priori hypothesis testing consistently and with minimal effort. Current tools that generate region of interest masks required for a priori hypothesis testing can be time-consuming and are often laboratory specific. In this paper we demonstrate a method of hypothesis-driven data analysis using an automated atlas-based masking technique. We provide a powerful method of probing fMRI data using automatically generated masks based on lobar anatomy, cortical and subcortical anatomy, and Brodmann areas. Hemisphere, lobar, anatomic label, tissue type, and Brodmann area atlases were generated in MNI space based on the Talairach Daemon. Additionally, we interfaced these multivolume atlases to a widely used fMRI software package, SPM99, and demonstrate the use of the atlas tool with representative fMRI data. This tool represents a necessary evolution in fMRI data analysis for testing of more spatially complex hypotheses.

摘要

传统上,功能磁共振成像(fMRI)数据的分析与解读是基于在整个成像脑容积的阈值化统计图谱上识别显著区域。这种分析形式可以比作是“盲目搜索”。随着我们对不同脑区结构 - 功能关系的了解日益深入,需要用于先验假设检验的工具。这些工具必须能够一致且轻松地生成用于先验假设检验的感兴趣区域掩膜。当前用于生成先验假设检验所需感兴趣区域掩膜的工具可能很耗时,而且通常是特定于实验室的。在本文中,我们展示了一种使用基于图谱的自动掩膜技术进行假设驱动数据分析的方法。我们提供了一种强大的方法,可使用基于脑叶解剖、皮质和皮质下解剖以及布罗德曼区域自动生成的掩膜来探测fMRI数据。基于Talairach守护进程在MNI空间中生成了半球、脑叶、解剖标签、组织类型和布罗德曼区域图谱。此外,我们将这些多体积图谱与广泛使用的fMRI软件包SPM99进行了接口连接,并展示了该图谱工具在代表性fMRI数据中的应用。该工具代表了fMRI数据分析在测试更具空间复杂性的假设方面的必要发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验