Suppr超能文献

通过对静息态和任务态功能磁共振成像数据进行n割法分割得出的人类脑图谱。

A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

作者信息

James George Andrew, Hazaroglu Onder, Bush Keith A

机构信息

Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR.

Department of Computer Science, University of Arkansas at Little Rock, Little Rock, AR.

出版信息

Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.

Abstract

The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75-0.80) than the Random atlases (r=0.64-0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses.

摘要

功能磁共振成像(fMRI)的发展促使了人类大脑图谱的开发,这些图谱是通过将静息态连接模式分割为功能上独立的感兴趣区域(ROI)而得到的。迄今为止,所有的功能图谱都是从静息态fMRI数据中得出的。但是,鉴于区域之间的功能连接会随任务而变化,我们推测,一个整合了静息态和基于任务的fMRI数据的图谱,相比仅从静息态得出的图谱,能够更精细地刻画与任务相关的区域。为了验证这一假设,我们从参与认知连接组项目的29名健康成年参与者中得出了分割图谱,该项目旨在通过绘制脑-行为关系中的规范差异来改善fMRI在临床决策中的应用。参与者接受了涵盖九个认知领域的静息态和基于任务的fMRI检查:运动、视觉空间、注意力、语言、记忆、情感处理、决策、工作记忆和执行功能。空间受限的n割法分割使用(1)所有参与者的功能数据(任务)或(2)单次静息态扫描(静息)得出脑图谱。还通过随机分割得出了一个图谱用于比较目的(随机)。比较了两种方法:(1)应用于组平均边权重的分割方法(均值),以及(2)先对个体边权重进行分割,然后对平均二值化边进行分割的两阶段方法(两阶段)。所得的任务图谱和静息图谱彼此之间的相似性(平均杰卡德指数JI = 0.72 - 0.85)显著高于与随机图谱的相似性(JI = 0.59 - 0.63;经邦费罗尼校正后所有p < 0.001)。任务图谱和静息图谱在两阶段方法中的相似性最高(JI = 0.85),该方法已被证明比均值方法更稳健;这些图谱在静息和执行n-back工作记忆任务期间,也比随机图谱(r = 0.64 - 0.72)能更好地重现左侧背外侧前额叶皮层的体素级种子图谱(r = 0.75 - 0.80),进一步验证了它们的实用性。我们预期控制高阶认知的区域(如额叶和颞叶前部)在任务图谱和静息图谱之间会显示出最大差异;与预期相反,这些区域在图谱之间的相似性最大。我们的研究结果表明,通过基于任务和静息态fMRI数据分割得出的图谱具有高度可比性,现有的静息态图谱适用于基于任务的分析。我们引入了一个经解剖学标记的fMRI衍生全脑人类图谱,用于未来的认知连接组分析。

相似文献

3
Group-wise parcellation of the cortex through multi-scale spectral clustering.通过多尺度谱聚类进行皮层的分组分割。
Neuroimage. 2016 Aug 1;136:68-83. doi: 10.1016/j.neuroimage.2016.05.035. Epub 2016 May 15.
9
Subspecialization in the human posterior medial cortex.人类后内侧皮质的亚专业化。
Neuroimage. 2015 Feb 1;106:55-71. doi: 10.1016/j.neuroimage.2014.11.009. Epub 2014 Nov 8.
10
AICHA: An atlas of intrinsic connectivity of homotopic areas.AICHA:同伦区域内在连通性图谱。
J Neurosci Methods. 2015 Oct 30;254:46-59. doi: 10.1016/j.jneumeth.2015.07.013. Epub 2015 Jul 23.

引用本文的文献

6
Unsupervised Registration Refinement for Generating Unbiased Eye Atlas.用于生成无偏眼图谱的无监督配准优化
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653753. Epub 2023 Apr 3.
8
The elusive metric of lesion load.难以捉摸的病变负荷指标。
Brain Struct Funct. 2023 May;228(3-4):703-716. doi: 10.1007/s00429-023-02630-1. Epub 2023 Mar 22.

本文引用的文献

1
Large-scale probabilistic functional modes from resting state fMRI.基于静息态功能磁共振成像的大规模概率性功能模式
Neuroimage. 2015 Apr 1;109:217-31. doi: 10.1016/j.neuroimage.2015.01.013. Epub 2015 Jan 15.
3
Basal ganglia circuits for reward value-guided behavior.用于奖励价值引导行为的基底神经节回路。
Annu Rev Neurosci. 2014;37:289-306. doi: 10.1146/annurev-neuro-071013-013924.
8
Non-stationarity in the "resting brain's" modular architecture.静息态大脑模块化结构的非稳定性。
PLoS One. 2012;7(6):e39731. doi: 10.1371/journal.pone.0039731. Epub 2012 Jun 28.
9
FSL.束流输送系统。
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验