Suppr超能文献

Microarray analysis of gene expression in the kidneys of new- and post-onset diabetic NOD mice.

作者信息

Wilson Karen H S, Eckenrode Sarah E, Li Quan-Zhen, Ruan Qing-Guo, Yang Ping, Shi Jing-Da, Davoodi-Semiromi Abdoreza, McIndoe Richard A, Croker Byron P, She Jin-Xiong

机构信息

Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia, USA.

出版信息

Diabetes. 2003 Aug;52(8):2151-9. doi: 10.2337/diabetes.52.8.2151.

Abstract

We profiled the expression of 5,760 clones from a kidney subtraction library in the kidneys of three groups of NOD mice: nondiabetic, new-onset, and long-term diabetic. A total of 27 genes had lower expression and 1 gene (Gpx3) had higher expression in the new-onset diabetic mice compared with nondiabetic control NOD mice (P < 0.001). Similarly, 19 of the above 27 genes and 7 additional genes had higher expression and the Gpx3 gene had lower expression in long-term diabetic mice compared with controls (P < 0.001). Interestingly, only three genes may be different between new-onset and long-term diabetic mice (P < 0.0004). These genes are from diverse functional groups, including oxidative phosphorylation, free radical neutralization, channels, pumps, lipid processing, transcription and translation machinery, protein trafficking, constitutive protein processing, and immune function. The majority of these genes fall into four signaling pathways: insulin, transforming growth factor-beta, tumor necrosis factor-alpha, and peroxisome proliferator-activated receptor. The most significant expression change was found for the stearoyl-coenzyme A desaturase 1 (SCD1) gene (P < 10(-7)). The lower expression levels of the SCD1 gene in both diabetic groups compared with controls were further confirmed by Northern blot analysis and immunohistochemistry.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验