Suppr超能文献

一个四向连接点通过一个离散中间体加速发夹状核酶的折叠。

A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate.

作者信息

Tan Elliot, Wilson Timothy J, Nahas Michelle K, Clegg Robert M, Lilley David M J, Ha Taekjip

机构信息

Department of Physics and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9308-13. doi: 10.1073/pnas.1233536100. Epub 2003 Jul 25.

Abstract

The natural form of the hairpin ribozyme comprises two major structural elements: a four-way RNA junction and two internal loops carried by adjacent arms of the junction. The ribozyme folds into its active conformation by an intimate association between the loops, and the efficiency of this process is greatly enhanced by the presence of the junction. We have used single-molecule spectroscopy to show that the natural form fluctuates among three distinct states: the folded state and two additional, rapidly interconverting states (proximal and distal) that are inherited from the junction. The proximal state juxtaposes the two loop elements, thereby increasing the probability of their interaction and thus accelerating folding by nearly three orders of magnitude and allowing the ribozyme to fold rapidly in physiological conditions. Therefore, the hairpin ribozyme exploits the dynamics of the junction to facilitate the formation of the active site from its other elements. Dynamic interplay between structural elements, as we demonstrate for the hairpin ribozyme, may be a general theme for other functional RNA molecules.

摘要

发夹状核酶的天然形式包含两个主要结构元件

一个四臂RNA连接区和由该连接区相邻臂携带的两个内环。核酶通过环之间的紧密结合折叠成其活性构象,并且该连接区的存在极大地提高了这一过程的效率。我们使用单分子光谱法表明,天然形式在三种不同状态之间波动:折叠状态以及从连接区继承而来的另外两种快速相互转换的状态(近端和远端)。近端状态使两个环元件并列,从而增加了它们相互作用的概率,进而将折叠速度提高了近三个数量级,并使核酶能够在生理条件下快速折叠。因此,发夹状核酶利用连接区的动力学来促进活性位点由其他元件形成。正如我们对发夹状核酶所证明的那样,结构元件之间的动态相互作用可能是其他功能性RNA分子的一个普遍主题。

相似文献

1
A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9308-13. doi: 10.1073/pnas.1233536100. Epub 2003 Jul 25.
2
Folding and catalysis of the hairpin ribozyme.
Biochem Soc Trans. 2005 Jun;33(Pt 3):461-5. doi: 10.1042/BST0330461.
3
The folding of the hairpin ribozyme: dependence on the loops and the junction.
RNA. 2000 Dec;6(12):1833-46. doi: 10.1017/s1355838200001230.
5
RNA folding and the origins of catalytic activity in the hairpin ribozyme.
Blood Cells Mol Dis. 2007 Jan-Feb;38(1):8-14. doi: 10.1016/j.bcmd.2006.10.004. Epub 2006 Dec 4.
7
Folding and catalysis by the hairpin ribozyme.
FEBS Lett. 1999 Jun 4;452(1-2):26-30. doi: 10.1016/s0014-5793(99)00544-x.
10
The tertiary structure of the hairpin ribozyme is formed through a slow conformational search.
Biochemistry. 2005 Mar 29;44(12):4870-6. doi: 10.1021/bi047772i.

引用本文的文献

2
RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling.
Nucleic Acids Res. 2023 Apr 24;51(7):3341-3356. doi: 10.1093/nar/gkad122.
3
3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the biodistribution.
Nano Res. 2020 Dec;13(12):3241-3247. doi: 10.1007/s12274-020-2996-1. Epub 2020 Sep 4.
4
Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs.
Nucleic Acids Res. 2021 Jun 21;49(11):6375-6388. doi: 10.1093/nar/gkab454.
6
Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET.
RNA. 2021 Apr;27(4):433-444. doi: 10.1261/rna.078220.120. Epub 2020 Dec 29.
7
Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12080-12086. doi: 10.1073/pnas.2003425117. Epub 2020 May 19.
8
Role of the central junction in folding topology of the protein-free human U2-U6 snRNA complex.
RNA. 2020 Jul;26(7):836-850. doi: 10.1261/rna.073379.119. Epub 2020 Mar 27.
9
Single-Molecule Analysis of Reverse Transcriptase Enzymes.
Cold Spring Harb Perspect Biol. 2019 Sep 3;11(9):a032458. doi: 10.1101/cshperspect.a032458.
10
Bayesian-Estimated Hierarchical HMMs Enable Robust Analysis of Single-Molecule Kinetic Heterogeneity.
Biophys J. 2019 May 21;116(10):1790-1802. doi: 10.1016/j.bpj.2019.02.031. Epub 2019 Apr 2.

本文引用的文献

1
Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1655-60. doi: 10.1073/pnas.0434003100. Epub 2003 Feb 10.
2
Structural dynamics of individual Holliday junctions.
Nat Struct Biol. 2003 Feb;10(2):93-7. doi: 10.1038/nsb883.
4
Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase.
Nature. 2002 Oct 10;419(6907):638-41. doi: 10.1038/nature01083.
5
The chemical repertoire of natural ribozymes.
Nature. 2002 Jul 11;418(6894):222-8. doi: 10.1038/418222a.
6
Correlating structural dynamics and function in single ribozyme molecules.
Science. 2002 May 24;296(5572):1473-6. doi: 10.1126/science.1069013.
7
Metal ion binding and the folding of the hairpin ribozyme.
RNA. 2002 May;8(5):587-600. doi: 10.1017/s1355838202020514.
9
Importance of specific nucleotides in the folding of the natural form of the hairpin ribozyme.
Biochemistry. 2001 Feb 20;40(7):2291-302. doi: 10.1021/bi002644p.
10
Reversible unfolding of single RNA molecules by mechanical force.
Science. 2001 Apr 27;292(5517):733-7. doi: 10.1126/science.1058498.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验