Department of Chemistry, Columbia University, New York, New York.
Department of Chemistry, Columbia University, New York, New York.
Biophys J. 2019 May 21;116(10):1790-1802. doi: 10.1016/j.bpj.2019.02.031. Epub 2019 Apr 2.
Single-molecule kinetic experiments allow the reaction trajectories of individual biomolecules to be directly observed, eliminating the effects of population averaging and providing a powerful approach for elucidating the kinetic mechanisms of biomolecular processes. A major challenge to the analysis and interpretation of these experiments, however, is the kinetic heterogeneity that almost universally complicates the recorded single-molecule signal versus time trajectories (i.e., signal trajectories). Such heterogeneity manifests as changes and/or differences in the transition rates that are observed within individual signal trajectories or across a population of signal trajectories. Because characterizing kinetic heterogeneity can provide critical mechanistic information, we have developed a computational method that effectively and comprehensively enables such analysis. To this end, we have developed a computational algorithm and software program, hFRET, that uses the variational approximation for Bayesian inference to estimate the parameters of a hierarchical hidden Markov model, thereby enabling robust identification and characterization of kinetic heterogeneity. Using simulated signal trajectories, we demonstrate the ability of hFRET to accurately and precisely characterize kinetic heterogeneity. In addition, we use hFRET to analyze experimentally recorded signal trajectories reporting on the conformational dynamics of ribosomal pre-translocation (PRE) complexes. The results of our analyses demonstrate that PRE complexes exhibit kinetic heterogeneity, reveal the physical origins of this heterogeneity, and allow us to expand the current model of PRE complex dynamics. The methods described here can be applied to signal trajectories generated using any type of signal and can be easily extended to the analysis of signal trajectories exhibiting more complex kinetic behaviors. Moreover, variations of our approach can be easily developed to integrate kinetic data obtained from different experimental constructs and/or from molecular dynamics simulations of a biomolecule of interest.
单分子动力学实验可以直接观察单个生物分子的反应轨迹,消除了群体平均的影响,为阐明生物分子过程的动力学机制提供了有力的方法。然而,这些实验的分析和解释面临的一个主要挑战是动力学异质性,这种异质性几乎普遍使记录的单分子信号与时间轨迹(即信号轨迹)复杂化。这种异质性表现为在单个信号轨迹内或在信号轨迹群体中观察到的跃迁率的变化和/或差异。因为表征动力学异质性可以提供关键的机制信息,所以我们开发了一种计算方法,可以有效地全面分析这种异质性。为此,我们开发了一种计算算法和软件程序 hFRET,它使用变分近似贝叶斯推理来估计分层隐马尔可夫模型的参数,从而能够稳健地识别和表征动力学异质性。使用模拟信号轨迹,我们证明了 hFRET 准确和精确地描述动力学异质性的能力。此外,我们使用 hFRET 分析了报告核糖体预迁移(PRE)复合物构象动力学的实验记录的信号轨迹。我们分析的结果表明,PRE 复合物表现出动力学异质性,揭示了这种异质性的物理起源,并允许我们扩展 PRE 复合物动力学的当前模型。这里描述的方法可以应用于使用任何类型的信号生成的信号轨迹,并且可以很容易地扩展到分析表现出更复杂动力学行为的信号轨迹。此外,我们方法的变体可以很容易地开发,以整合来自不同实验构建体和/或感兴趣的生物分子的分子动力学模拟获得的动力学数据。