Lu Wenlian, Rong Libin, Chen Tianping
Laboratory of Nonlinear Science, Institute of Mathematics, Fudan University, Shanghai, 200433, P.R. China.
Int J Neural Syst. 2003 Jun;13(3):193-204. doi: 10.1142/S0129065703001534.
In this paper, without assuming the boundedness, strict monotonicity and differentiability of the activation functions, we utilize a new Lyapunov function to analyze the global convergence of a class of neural networks models with time delays. A new sufficient condition guaranteeing the existence, uniqueness and global exponential stability of the equilibrium point is derived. This stability criterion imposes constraints on the feedback matrices independently of the delay parameters. The result is compared with some previous works. Furthermore, the condition may be less restrictive in the case that the activation functions are hyperbolic tangent.
在本文中,我们不假设激活函数的有界性、严格单调性和可微性,而是利用一个新的李雅普诺夫函数来分析一类具有时滞的神经网络模型的全局收敛性。推导出了一个保证平衡点存在性、唯一性和全局指数稳定性的新的充分条件。该稳定性判据对反馈矩阵施加约束,且与延迟参数无关。将该结果与一些先前的工作进行了比较。此外,在激活函数为双曲正切的情况下,该条件的限制可能较小。