Liu Yurong, Wang Zidong, Liu Xiaohui
Department of Mathematics, Yangzhou University, Yangzhou 225002, People's Republic of China.
Neural Netw. 2006 Jun;19(5):667-75. doi: 10.1016/j.neunet.2005.03.015. Epub 2005 Jul 20.
This paper is concerned with analysis problem for the global exponential stability of a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. We first prove the existence and uniqueness of the equilibrium point under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, by employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the RNNs to be globally exponentially stable. Therefore, the global exponential stability of the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.
本文关注一类具有混合离散和分布时滞的递归神经网络(RNNs)的全局指数稳定性分析问题。我们首先在温和条件下证明平衡点的存在性和唯一性,假设激活函数既不可微也不严格单调。然后,通过使用一种新的Lyapunov-Krasovskii泛函,开发了一种线性矩阵不等式(LMI)方法来建立RNNs全局指数稳定的充分条件。因此,利用数值高效的Matlab LMI工具箱可以很容易地检验时滞RNNs的全局指数稳定性,并且无需参数调整。通过一个仿真例子展示了所推导的基于LMI的稳定性条件的有效性。