Suppr超能文献

鞭毛旋转马达的螺旋旋转模型。

Helix rotation model of the flagellar rotary motor.

作者信息

Schmitt Rüdiger

机构信息

Institute of Biochemistry, Genetics, and Microbiology, University of Regensburg, D-93040 Regensburg, Germany.

出版信息

Biophys J. 2003 Aug;85(2):843-52. doi: 10.1016/S0006-3495(03)74524-X.

Abstract

A new model of the flagellar motor is proposed that is based on established dynamics of the KcsA potassium ion channel and on known genetic, biochemical, and biophysical facts, which accounts for the mechanics of torque generation, force transmission, and reversals of motor rotation. It predicts that proton (or in some species sodium ion) flow generates short, reversible helix rotations of the MotA-MotB channel complex (the stator) that are transmitted by Coulomb forces to the FliG segments at the rotor surface. Channels are arranged as symmetric pairs, S and T, that swing back and forth in synchrony. S and T alternate in attaching to the rotor, so that force transmission proceeds in steps. The sense of motor rotation can be readily reversed by conformationally switching the position of charged groups on the rotor so that they interact with the stator during the reverse rather than forward strokes. An elastic device accounts for the observed smoothness of rotation and a prolonged attachment of the torque generators to the rotor, i.e., a high duty ratio of each torque-generating unit.

摘要

基于KcsA钾离子通道已确定的动力学以及已知的遗传、生化和生物物理事实,提出了一种鞭毛马达的新模型,该模型解释了扭矩产生、力传递和马达旋转反转的力学原理。它预测质子(或在某些物种中为钠离子)流会产生MotA-MotB通道复合体(定子)的短的、可逆的螺旋旋转,这些旋转通过库仑力传递到转子表面的FliG片段。通道以对称对S和T的形式排列,它们同步地来回摆动。S和T交替附着在转子上,从而使力传递逐步进行。通过构象切换转子上带电基团的位置,使它们在反向而非正向冲程中与定子相互作用,马达旋转方向可以很容易地反转。一种弹性装置解释了观察到的旋转平滑性以及扭矩发生器与转子的长时间附着,即每个扭矩产生单元的高占空比。

相似文献

1
Helix rotation model of the flagellar rotary motor.
Biophys J. 2003 Aug;85(2):843-52. doi: 10.1016/S0006-3495(03)74524-X.
2
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the H-Driven Flagellar Motor.
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00727-18. Print 2019 Mar 15.
3
Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
J Bacteriol. 1999 Jun;181(11):3542-51. doi: 10.1128/JB.181.11.3542-3551.1999.
4
Proposed model for the flagellar rotary motor.
Colloids Surf B Biointerfaces. 2005 Nov 25;46(1):32-44. doi: 10.1016/j.colsurfb.2005.07.011. Epub 2005 Oct 3.
6
Structural insights into flagellar stator-rotor interactions.
Elife. 2019 Jul 17;8:e48979. doi: 10.7554/eLife.48979.
9

引用本文的文献

2
Dynamics of the bacterial flagellar motor with multiple stators.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3746-51. doi: 10.1073/pnas.0809929106. Epub 2009 Feb 20.
4
Torque-speed relationship of the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1260-5. doi: 10.1073/pnas.0507959103. Epub 2006 Jan 23.
7

本文引用的文献

1
The rotary motor of bacterial flagella.
Annu Rev Biochem. 2003;72:19-54. doi: 10.1146/annurev.biochem.72.121801.161737. Epub 2002 Dec 11.
2
Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG.
EMBO J. 2002 Jul 1;21(13):3225-34. doi: 10.1093/emboj/cdf332.
4
Sinorhizobial chemotaxis: a departure from the enterobacterial paradigm.
Microbiology (Reading). 2002 Mar;148(Pt 3):627-631. doi: 10.1099/00221287-148-3-627.
5
Chloride channels are different.
Nature. 2002 Jan 17;415(6869):276-7. doi: 10.1038/415276a.
6
An ultrasonic motor model for bacterial flagellar motors.
J Theor Biol. 2001 Nov 7;213(1):31-51. doi: 10.1006/jtbi.2001.2402.
9
Conformational change in the stator of the bacterial flagellar motor.
Biochemistry. 2001 Oct 30;40(43):13041-50. doi: 10.1021/bi011263o.
10
Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants.
J Bacteriol. 2001 Nov;183(21):6404-12. doi: 10.1128/JB.183.21.6404-6412.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验