Braun T F, Poulson S, Gully J B, Empey J C, Van Way S, Putnam A, Blair D F
Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
J Bacteriol. 1999 Jun;181(11):3542-51. doi: 10.1128/JB.181.11.3542-3551.1999.
Bacterial flagellar motors obtain energy for rotation from the membrane gradient of protons or, in some species, sodium ions. The molecular mechanism of flagellar rotation is not understood. MotA and MotB are integral membrane proteins that function in proton conduction and are believed to form the stator of the motor. Previous mutational studies identified two conserved proline residues in MotA (Pro 173 and Pro 222 in the protein from Escherichia coli) and a conserved aspartic acid residue in MotB (Asp 32) that are important for function. Asp 32 of MotB probably forms part of the proton path through the motor. To learn more about the roles of the conserved proline residues of MotA, we examined motor function in Pro 173 and Pro 222 mutants, making measurements of torque at high load, speed at low and intermediate loads, and solvent-isotope effects (D2O versus H2O). Proton conduction by wild-type and mutant MotA-MotB channels was also assayed, by a growth defect that occurs upon overexpression. Several different mutations of Pro 173 reduced the torque of the motor under high load, and a few prevented motor rotation but still allowed proton flow through the MotA-MotB channels. These and other properties of the mutants suggest that Pro 173 has a pivotal role in coupling proton flow to motor rotation and is positioned in the channel near Asp 32 of MotB. Replacements of Pro 222 abolished function in all assays and were strongly dominant. Certain Pro 222 mutant proteins prevented swimming almost completely when expressed at moderate levels in wild-type cells. This dominance might be caused by rotor-stator jamming, because it was weaker when FliG carried a mutation believed to increase rotor-stator clearance. We propose a mechanism for torque generation, in which specific functions are suggested for the proline residues of MotA and Asp32 of MotB.
细菌鞭毛马达从质子或某些物种中的钠离子的膜梯度获取旋转能量。鞭毛旋转的分子机制尚不清楚。MotA和MotB是参与质子传导的整合膜蛋白,被认为形成马达的定子。先前的突变研究在MotA中鉴定出两个保守的脯氨酸残基(大肠杆菌蛋白质中的Pro 173和Pro 222)以及MotB中的一个保守天冬氨酸残基(Asp 32),它们对功能很重要。MotB的Asp 32可能构成穿过马达的质子路径的一部分。为了更多地了解MotA保守脯氨酸残基的作用,我们检测了Pro 173和Pro 222突变体中的马达功能,测量了高负载下的扭矩、低负载和中等负载下的速度以及溶剂同位素效应(D2O与H2O)。还通过过表达时出现的生长缺陷来检测野生型和突变型MotA-MotB通道的质子传导。Pro 173的几种不同突变降低了高负载下马达的扭矩,少数突变阻止了马达旋转,但仍允许质子流过MotA-MotB通道。这些突变体的这些及其他特性表明,Pro 173在将质子流与马达旋转耦合中起关键作用,并位于MotB的Asp 32附近的通道中。Pro 222的替换在所有检测中均消除了功能,并且具有强烈的显性作用。某些Pro 222突变蛋白在野生型细胞中以中等水平表达时几乎完全阻止了游动。这种显性作用可能是由转子-定子卡塞引起的,因为当FliG携带一个据信会增加转子-定子间隙的突变时,这种作用较弱。我们提出了一种扭矩产生机制,其中对MotA的脯氨酸残基和MotB的Asp32提出了特定功能。