Suppr超能文献

ClC-0氯离子通道孔中的侧链电荷效应与电导决定因素

Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels.

作者信息

Chen Mei-Fang, Chen Tsung-Yu

机构信息

Center for Neuroscience, University of California, Davis, CA 95616, USA.

出版信息

J Gen Physiol. 2003 Aug;122(2):133-45. doi: 10.1085/jgp.200308844.

Abstract

The charge on the side chain of the internal pore residue lysine 519 (K519) of the Torpedo ClC-0 chloride (Cl-) channel affects channel conductance. Experiments that replace wild-type (WT) lysine with neutral or negatively charged residues or that modify the K519C mutant with various methane thiosulfonate (MTS) reagents show that the conductance of the channel decreases when the charge at position 519 is made more negative. This charge effect on the channel conductance diminishes in the presence of a high intracellular Cl- concentration ([Cl-]i). However, the application of high concentrations of nonpermeant ions, such as glutamate or sulfate (SO42-), does not change the conductance, suggesting that the electrostatic effects created by the charge at position 519 are unlikely due to a surface charge mechanism. Another pore residue, glutamate 127 (E127), plays an even more critical role in controlling channel conductance. This negatively charged residue, based on the structures of the homologous bacterial ClC channels, lies 4-5 A from K519. Altering the charge of this residue can influence the apparent Cl- affinity as well as the saturated pore conductance in the conductance-Cl- activity curve. Amino acid residues at the selectivity filter also control the pore conductance but mutating these residues mainly affects the maximal pore conductance. These results suggest at least two different conductance determinants in the pore of ClC-0, consistent with the most recent crystal structure of the bacterial ClC channel solved to 2.5 A, in which multiple Cl--binding sites were identified in the pore. Thus, we suggest that the occupancy of the internal Cl--binding site is directly controlled by the charged residues located at the inner pore mouth. On the other hand, the Cl--binding site at the selectivity filter controls the exit rate of Cl- and therefore determines the maximal channel conductance.

摘要

电鳐ClC-0氯离子(Cl-)通道内部孔道残基赖氨酸519(K519)侧链上的电荷影响通道电导。用中性或带负电荷的残基取代野生型(WT)赖氨酸,或用各种甲硫基磺酸盐(MTS)试剂修饰K519C突变体的实验表明,当519位的电荷变得更负时,通道的电导会降低。在高细胞内Cl-浓度([Cl-]i)存在的情况下,这种对通道电导的电荷效应会减弱。然而,应用高浓度的非渗透性离子,如谷氨酸或硫酸根(SO42-),并不会改变电导,这表明519位电荷产生的静电效应不太可能是由于表面电荷机制。另一个孔道残基谷氨酸127(E127)在控制通道电导方面发挥着更关键的作用。基于同源细菌ClC通道的结构,这个带负电荷的残基距离K519为4-5埃。改变这个残基的电荷会影响电导-Cl-活性曲线中的表观Cl-亲和力以及饱和孔道电导。选择性过滤器处的氨基酸残基也控制着孔道电导,但突变这些残基主要影响最大孔道电导。这些结果表明ClC-0孔道中至少有两种不同的电导决定因素,这与最近解析到2.5埃分辨率的细菌ClC通道晶体结构一致,在该结构中孔道内鉴定出多个Cl-结合位点。因此,我们认为内部Cl-结合位点的占据直接受位于内孔口的带电残基控制。另一方面,选择性过滤器处的Cl-结合位点控制着Cl-的流出速率,因此决定了最大通道电导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/862a/2229543/47897b743aa0/200308844f1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验