Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11699-704. doi: 10.1073/pnas.1205764109. Epub 2012 Jul 2.
CLC proteins underlie muscle, kidney, bone, and other organ system function by catalyzing the transport of Cl(-) ions across cell and organellar membranes. Some CLC proteins are ion channels while others are pumps that exchange Cl(-) for H(+). The pathway through which Cl(-) ions cross the membrane has been characterized, but the transport of H(+) and the principle by which their movement is coupled to Cl(-) movement is not well understood. Here we show that H(+) transport depends not only on the presence of a specific glutamate residue but also the presence of Cl(-) ions. H(+) transport, however, can be isolated and analyzed in the absence of Cl(-) by mutating the glutamate to alanine and adding carboxylate-containing molecules to solution, consistent with the notion that H(+) transfer is mediated through the entry of a carboxylate group into the anion pathway. Cl(-) ions and carboxylate interact with each other strongly. These data support a mechanism in which the glutamate carboxylate functions as a surrogate Cl(-) ion, but it can accept a H(+) and transfer it between the external solution and the central Cl(-) binding site, coupled to the movement of 2 Cl(-) ions.
CLC 蛋白通过催化 Cl(-)离子穿过细胞膜和细胞器膜的运输,为肌肉、肾脏、骨骼和其他器官系统的功能提供基础。一些 CLC 蛋白是离子通道,而另一些则是将 Cl(-)交换为 H(+)的泵。Cl(-)离子穿过膜的途径已经被描述,但 H(+)的运输以及它们的运动与 Cl(-)运动偶联的原理还不是很清楚。在这里,我们表明 H(+)的运输不仅取决于特定谷氨酸残基的存在,还取决于 Cl(-)离子的存在。然而,通过将谷氨酸突变为丙氨酸并在溶液中添加含有羧酸盐的分子,可以在没有 Cl(-)的情况下分离和分析 H(+)的运输,这与 H(+)的转移是通过羧酸盐基团进入阴离子途径介导的观点一致。Cl(-)离子和羧酸盐之间相互作用强烈。这些数据支持一种机制,其中谷氨酸的羧酸盐可以作为 Cl(-)离子的替代物,但它可以接受 H(+)并在外部溶液和中央 Cl(-)结合位点之间传递,与 2 个 Cl(-)离子的运动偶联。