Suppr超能文献

利用基因微阵列分析对血液系统恶性肿瘤进行分类和预测预后。

The use of genetic microarray analysis to classify and predict prognosis in haematological malignancies.

作者信息

Levene A P, Morgan G J, Davies F E

机构信息

Academic Unit of Oncology and Haematology, Algernon Firth Building, University of Leeds, Leeds, W Yorkshire, UK.

出版信息

Clin Lab Haematol. 2003 Aug;25(4):209-20. doi: 10.1046/j.1365-2257.2003.00532.x.

Abstract

The introduction of microarrays offers the opportunity to examine the expression of many thousands of genes in a single experiment. Investigations in leukaemia and lymphoma have led to the identification of a number of subgroups, with a defined gene expression pattern, not previously identified by morphology, cytogenetics or molecular techniques. In many cases these expression patterns can be linked to the tumour cells normal developmental counterpart, and represent distinct disease subgroups with different clinical presentations and outcomes. The technology has also identified genes that may be important in tumour cell biology including key genes in cell proliferation, adhesion, apoptosis, and the development of drug resistance. These early studies demonstrate that genetic microarrays will be useful in classifying haematological malignancies, predicting response to treatment, predicting prognosis, and identifying novel targets for therapy.

摘要

微阵列技术的引入为在单个实验中检测数以千计基因的表达提供了机会。对白血病和淋巴瘤的研究已导致识别出一些亚组,这些亚组具有特定的基因表达模式,而这是以前通过形态学、细胞遗传学或分子技术无法识别的。在许多情况下,这些表达模式可与肿瘤细胞正常发育的对应物相关联,并代表具有不同临床表现和预后的不同疾病亚组。该技术还鉴定出了可能在肿瘤细胞生物学中起重要作用的基因,包括细胞增殖、黏附、凋亡以及耐药性发展中的关键基因。这些早期研究表明,基因微阵列在血液系统恶性肿瘤的分类、预测治疗反应、预测预后以及识别新的治疗靶点方面将很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验