Suppr超能文献

在一般系谱中使用多种表型定位数量性状基因座。

Mapping quantitative trait loci using multiple phenotypes in general pedigrees.

作者信息

Wang Kai

机构信息

Division of Statistical Genetics, Departments of Biostatistics, The University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

Hum Hered. 2003;55(1):1-15. doi: 10.1159/000071805.

Abstract

The use of correlated phenotypes may dramatically increase the power to detect the underlying quantitative trait loci (QTLs). Current approaches for multiple phenotypes include regression-based methods, the multivariate variance of components method, factor analysis and structural equations. Issues with these methods include: 1) They are computation intensive and are subject to problems of optimization algorithms; 2) Existing claims on the asymptotic distribution of the likelihood ratio statistic for the multivariate variance of components method are contradictory and erroneous; 3) The dimension reduction of the parameter space under the null hypothesis, a phenomenon that is unique to multivariate analyses, makes the asymptotic distribution of the likelihood ratio statistic more complicated than expected. In this article, three cases of varying complexity are considered. For each case, the efficient score statistic, which is asympotically equivalent to the likelihood ratio statistic, is derived, so is its asymptotic distribution [correction]. These methods are straightforward to calculate. Finite-sample properties of these score statistics are studied through extensive simulations. These score statistics are for use with general pedigrees.

摘要

使用相关表型可能会显著提高检测潜在数量性状基因座(QTL)的能力。目前针对多个表型的方法包括基于回归的方法、多变量成分方差法、因子分析和结构方程。这些方法存在的问题包括:1)计算量很大,且容易受到优化算法问题的影响;2)关于多变量成分方差法似然比统计量的渐近分布,现有说法相互矛盾且有误;3)在原假设下参数空间的降维,这是多变量分析特有的现象,使得似然比统计量的渐近分布比预期更复杂。在本文中,考虑了三种不同复杂程度的情况。对于每种情况,推导了与似然比统计量渐近等价的有效得分统计量及其渐近分布[校正]。这些方法计算起来很简单。通过广泛的模拟研究了这些得分统计量的有限样本性质。这些得分统计量适用于一般家系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验