Jiang Lan, Crews Stephen T
Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
Mol Cell Biol. 2003 Aug;23(16):5625-37. doi: 10.1128/MCB.23.16.5625-5637.2003.
The development of the mature insect trachea requires a complex series of cellular events, including tracheal cell specification, cell migration, tubule branching, and tubule fusion. Here we describe the identification of the Drosophila melanogaster dysfusion gene, which encodes a novel basic helix-loop-helix (bHLH)-PAS protein conserved between Caenorhabditis elegans, insects, and humans, and controls tracheal fusion events. The Dysfusion protein functions as a heterodimer with the Tango bHLH-PAS protein in vivo to form a putative DNA-binding complex. The dysfusion gene is expressed in a variety of embryonic cell types, including tracheal-fusion, leading-edge, foregut atrium cells, nervous system, hindgut, and anal pad cells. RNAi experiments indicate that dysfusion is required for dorsal branch, lateral trunk, and ganglionic branch fusion but not for fusion of the dorsal trunk. The escargot gene, which is also expressed in fusion cells and is required for tracheal fusion, precedes dysfusion expression. Analysis of escargot mutants indicates a complex pattern of dysfusion regulation, such that dysfusion expression is dependent on escargot in the dorsal and ganglionic branches but not the dorsal trunk. Early in tracheal development, the Trachealess bHLH-PAS protein is present at uniformly high levels in all tracheal cells, but since the levels of Dysfusion rise in wild-type fusion cells, the levels of Trachealess in fusion cells decline. The downregulation of Trachealess is dependent on dysfusion function. These results suggest the possibility that competitive interactions between basic helix-loop-helix-PAS proteins (Dysfusion, Trachealess, and possibly Similar) may be important for the proper development of the trachea.
成熟昆虫气管的发育需要一系列复杂的细胞事件,包括气管细胞特化、细胞迁移、小管分支和小管融合。在这里,我们描述了果蝇融合缺陷基因的鉴定,该基因编码一种在秀丽隐杆线虫、昆虫和人类之间保守的新型碱性螺旋-环-螺旋(bHLH)-PAS蛋白,并控制气管融合事件。融合缺陷蛋白在体内与Tango bHLH-PAS蛋白形成异二聚体,以形成一种假定的DNA结合复合物。融合缺陷基因在多种胚胎细胞类型中表达,包括气管融合细胞、前缘细胞、前肠心房细胞、神经系统、后肠和肛垫细胞。RNA干扰实验表明,融合缺陷对于背侧分支、侧干和神经节分支的融合是必需的,但对于背干的融合则不是必需的。蜗牛基因也在融合细胞中表达,并且是气管融合所必需的,其表达先于融合缺陷基因。对蜗牛突变体的分析表明,融合缺陷基因的调控模式复杂,使得融合缺陷基因的表达在背侧和神经节分支中依赖于蜗牛基因,但在背干中则不依赖。在气管发育早期,无气管bHLH-PAS蛋白在所有气管细胞中均以均匀的高水平存在,但由于在野生型融合细胞中融合缺陷蛋白的水平升高,融合细胞中无气管蛋白的水平下降。无气管蛋白的下调依赖于融合缺陷基因的功能。这些结果表明,碱性螺旋-环-螺旋-PAS蛋白(融合缺陷蛋白、无气管蛋白以及可能的类似蛋白)之间的竞争性相互作用可能对气管的正常发育很重要。