Bánhegyi Gábor, Csala Miklós, Szarka András, Varsányi Marianne, Benedetti Angelo, Mandl József
Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.
Biofactors. 2003;17(1-4):37-46. doi: 10.1002/biof.5520170105.
Both in prokaryotic and eukaryotic cells, disulfide bond formation (oxidation and isomerization steps) are catalyzed exclusively in extracytoplasmic compartments. In eukaryotes, protein folding and disulfide bond formation are coupled processes that occur both co- and posttranslationally in the endoplasmic reticulum (ER), which is the main site of the synthesis and posttranslational modification of secretory and membrane proteins. The formation of a disulfide bond from the thiol groups of two cysteine residues requires the removal of two electrons, consequently, these bonds cannot form spontaneously; an oxidant is needed to accept the electrons. In aerobic conditions the ultimate electron acceptor is usually oxygen; however, oxygen itself is not effective in protein thiol oxidation. Therefore, a small molecular weight membrane permeable compound should be supposed for the transfer of electrons from the ER lumen. The aim of the present study was the investigation of the role of ascorbate/dehydroascorbate redox couple in oxidative folding of proteins. We demonstrated that ascorbate addition or its in situ synthesis from gulonolactone results in protein thiol (and/or glutathione; GSH) oxidation in rat liver microsomes. Since microsomal membrane is hardly permeable to ascorbate, the existence of a transport metabolon was hypothesized. Three components of the system have been described and partially characterized: (i) A microsomal metalloenzyme is responsible for ascorbate oxidation on the outer surface of the ER. Ascorbate oxidation results in ascorbate free radical and dehydroascorbate production. (ii) Facilitated diffusion of dehydroascorbate is present in microsomal vesicles. The transport is presumably mediated by a GLUT-type transporter. On the contrary, the previously hypothesized glutathione disulfide (GSSG) transport is practically absent, while GSH is transported with a moderate velocity. (iii) Protein disulfide isomerase catalyzes the reduction of dehydroascorbate in the ER lumen. Both GSH and protein thiols can be electron donors in the process. Intraluminal dehydroascorbate reduction and the consequent ascorbate accumulation strictly correlate with protein disulfide isomerase activity and protein thiol concentration. The concerted action of the three components of the system results in the intraluminal accumulation of ascorbate, protein disulfide and GSSG. In fact, intraluminal ascorbate and GSSG accumulation could be observed upon dehydroascorbate and GSH uptake. In conclusion, ascorbate is able to promote protein disulfide formation in an in vitro system. Further work is needed to justify its role in intact cellular and in vivo systems, as well as to explore the participation of other antioxidants (e.g. tocopherol, ubiquinone, and vitamin K) in the electron transfer chain responsible for oxidative protein folding in the ER.
在原核细胞和真核细胞中,二硫键的形成(氧化和异构化步骤)仅在胞外区室中催化。在真核生物中,蛋白质折叠和二硫键形成是在内质网(ER)中同时发生在翻译过程中和翻译后过程中的耦合过程,内质网是分泌蛋白和膜蛋白合成及翻译后修饰的主要场所。由两个半胱氨酸残基的巯基形成二硫键需要去除两个电子,因此,这些键不能自发形成;需要一种氧化剂来接受电子。在有氧条件下,最终的电子受体通常是氧气;然而,氧气本身在蛋白质巯基氧化中不起作用。因此,应该假定一种小分子质量的膜可渗透化合物用于将电子从内质网腔转移。本研究的目的是研究抗坏血酸/脱氢抗坏血酸氧化还原对在蛋白质氧化折叠中的作用。我们证明,添加抗坏血酸或由古洛糖酸内酯原位合成抗坏血酸会导致大鼠肝微粒体中的蛋白质巯基(和/或谷胱甘肽;GSH)氧化。由于微粒体膜几乎不能渗透抗坏血酸,因此推测存在一种转运代谢体。该系统的三个组分已被描述并部分表征:(i)一种微粒体金属酶负责内质网外表面的抗坏血酸氧化。抗坏血酸氧化导致抗坏血酸自由基和脱氢抗坏血酸的产生。(ii)脱氢抗坏血酸在微粒体囊泡中存在易化扩散。这种转运可能由一种GLUT型转运蛋白介导。相反,先前推测的谷胱甘肽二硫化物(GSSG)转运实际上不存在,而GSH以适度的速度转运。(iii)蛋白质二硫键异构酶催化内质网腔内脱氢抗坏血酸的还原。在这个过程中,GSH和蛋白质巯基都可以作为电子供体。腔内脱氢抗坏血酸的还原以及随之而来的抗坏血酸积累与蛋白质二硫键异构酶活性和蛋白质巯基浓度严格相关。该系统三个组分的协同作用导致腔内抗坏血酸、蛋白质二硫键和GSSG的积累。事实上,在摄取脱氢抗坏血酸和GSH后可以观察到腔内抗坏血酸和GSSG的积累。总之,抗坏血酸能够在体外系统中促进蛋白质二硫键的形成。需要进一步的工作来证明其在完整细胞和体内系统中的作用,以及探索其他抗氧化剂(如生育酚、泛醌和维生素K)在负责内质网中蛋白质氧化折叠的电子传递链中的参与情况。