Zlatanova Jordanka, Leuba Sanford H
Department of Chemistry and Chemicl Engineering, Polytechnic University, Brooklyn, New York 11201, USA.
Biochem Cell Biol. 2003 Jun;81(3):151-9. doi: 10.1139/o03-048.
The advent of single-molecule biology has allowed unprecedented insight into the dynamic behavior of biological macromolecules and their complexes. Unexpected properties, masked by the asynchronous behavior of myriads of molecules in bulk experiments, can be revealed; equally importantly, individual members of a molecular population often exhibit distinct features in their properties. Finally, the single-molecule approaches allow us to study the behavior of biological macromolecules under applied tension or torsion; understanding the mechanical properties of these molecules helps us understand how they function in the cell. In this review, we summarize the application of magnetic tweezers (MT) to the study of DNA behavior at the single-molecule level. MT can be conveniently used to stretch DNA and introduce controlled levels of superhelicity into the molecule and to follow to a high definition the action of different types of topoisomerases. Its potential for chromatin studies is also enormous, and we will briefly present our first chromatin results.
单分子生物学的出现使人们对生物大分子及其复合物的动态行为有了前所未有的深入了解。在大量实验中,无数分子的异步行为掩盖了一些意想不到的特性,而现在这些特性得以揭示;同样重要的是,分子群体中的个体成员在性质上往往表现出不同的特征。最后,单分子方法使我们能够研究生物大分子在施加张力或扭转力时的行为;了解这些分子的力学性质有助于我们理解它们在细胞中的功能。在这篇综述中,我们总结了磁镊(MT)在单分子水平上研究DNA行为的应用。磁镊可方便地用于拉伸DNA,并将可控水平的超螺旋引入分子中,还能以高分辨率跟踪不同类型拓扑异构酶的作用。其在染色质研究方面的潜力也巨大,我们将简要介绍我们的首批染色质研究结果。