Esberg L B, Ren J
Division of Pharmaceutical Sciences, University of Wyoming College of Health Sciences, Laramie, WY 82071-3375, USA.
Diabetologia. 2003 Oct;46(10):1419-27. doi: 10.1007/s00125-003-1183-8. Epub 2003 Jul 29.
AIMS/HYPOTHESIS: Local overproduction of nitric oxide is seen in early stages of diabetes, which can react with superoxide (O(2)(-)) to form peroxynitrite (ONOO(-)). The aim of this study was to examine the effect of scavengers for nitric oxide, O(2)(-), ONOO(-) and NOS cofactor tetrahydrobiopterin (BH(4)) on high glucose-induced cardiac contractile dysfunction.
Ventricular myocytes were cultured for 24 h with either normal (N, 5.5 mmol/l) or high (25.5 mmol/l) glucose, with or without the nitric oxide scavengers haemoglobin (100 nmol/l), PTIO (100 micromol/l), the NOS inhibitor L-NMMA (100 micromol/l), superoxide dismutase (SOD, 500 U/ml), the ONOO(-) scavengers urate (100 micromol/l), MnTABP (100 micromol/l), BH(4) (10 micromol/l) and its inactive analogue NH(4) (10 micromol/l), and the GTP cyclohydrolase I inhibitor DAHP (1 mmol/l). Myocyte mechanics, NOS protein expression and activity were evaluated.
High glucose myocytes showed reduced peak shortening, decreased maximal velocity of shortening/relengthening (+/- dL/dt), prolonged relengthening (TR(90)) and normal shortening duration (TPS) associated with reduced cytosolic Ca(2+) rise compared to normal myocytes. The high glucose-induced abnormalities were abrogated or attenuated by urate, MnTBAP, L-NMMA, BH(4), and SOD, whereas unaffected by haemoglobin, PTIO and NH(4). L-NMMA reduced peak shortening while PTIO and DAHP depressed +/- dL/dt and prolonged TPS or TR(90) in normal myocytes. High glucose increased NOS activity, protein expression of eNOS but not iNOS, which were attenuated by L-NMMA and BH(4), respectively.
CONCLUSION/INTERPRETATION: These results suggested that NOS cofactor, NO and ONOO(-) play a role in glucose-induced cardiomyocyte contractile dysfunction and in the pathogenesis of diabetic cardiomyopathy.
目的/假设:糖尿病早期可见局部一氧化氮过度生成,其可与超氧化物(O₂⁻)反应生成过氧亚硝酸盐(ONOO⁻)。本研究旨在探讨一氧化氮、O₂⁻、ONOO⁻清除剂及一氧化氮合酶辅因子四氢生物蝶呤(BH₄)对高糖诱导的心脏收缩功能障碍的影响。
将心室肌细胞分别在正常(N,5.5 mmol/L)或高糖(25.5 mmol/L)环境中培养24小时,同时添加或不添加一氧化氮清除剂血红蛋白(100 nmol/L)、PTIO(100 μmol/L)、一氧化氮合酶抑制剂L-NMMA(100 μmol/L)、超氧化物歧化酶(SOD,500 U/ml)、ONOO⁻清除剂尿酸(100 μmol/L)、MnTABP(100 μmol/L)、BH₄(10 μmol/L)及其无活性类似物NH₄(10 μmol/L),以及GTP环水解酶I抑制剂DAHP(1 mmol/L)。评估心肌细胞力学、一氧化氮合酶蛋白表达及活性。
与正常心肌细胞相比,高糖处理的心肌细胞表现出峰缩短减少、缩短/再延长最大速度(±dL/dt)降低、再延长时间(TR₉₀)延长以及缩短持续时间(TPS)正常,同时伴有胞质Ca²⁺升高减少。尿酸、MnTBAP、L-NMMA、BH₄和SOD可消除或减轻高糖诱导的异常,而血红蛋白、PTIO和NH₄则无影响。L-NMMA降低峰缩短,而PTIO和DAHP降低正常心肌细胞的±dL/dt并延长TPS或TR₉₀。高糖增加一氧化氮合酶活性、内皮型一氧化氮合酶蛋白表达但不增加诱导型一氧化氮合酶蛋白表达,L-NMMA和BH₄分别使其减弱。
结论/解读:这些结果表明,一氧化氮合酶辅因子、一氧化氮和ONOO⁻在葡萄糖诱导的心肌细胞收缩功能障碍及糖尿病性心肌病发病机制中起作用。