Laus Sabrina, Ruloff Robert, Tóth Eva, Merbach André E
Institut de Chimie Moléculaire et Biologique, Ecole Polytechnique Fédérale de Lausanne, EPFL-BCH 1015 Lausanne, Switzerland.
Chemistry. 2003 Aug 4;9(15):3555-66. doi: 10.1002/chem.200204612.
On the basis of structural considerations in the inner sphere of nine-coordinate, monohydrated Gd(III) poly(aminocarboxylate) complexes, we succeeded in accelerating the water exchange by inducing steric compression around the water binding site. We modified the common DTPA(5-) ligand (DTPA=(diethylenetriamine-N,N,N',N",N"-pentaacetic acid) by replacing one (EPTPA(5-)) or two (DPTPA(5-)) ethylene bridges of the backbone by propylene bridges, or one coordinating acetate by a propionate arm (DTTA-prop(5-)). The ligand EPTPA(5-) was additionally functionalized with a nitrobenzyl linker group (EPTPA-bz-NO(2) (5-)) to allow for coupling of the chelate to macromolecules. The water exchange rate, determined from a combined variable-temperature (17)O NMR and EPR study, is two orders of magnitude higher on Gd(eptpa-bz-NO(2))(H(2)O) and Gd(eptpa)(H(2)O) than on Gd(dtpa)(H(2)O) (k(ex)298=150x10(6), 330x10(6), and 3.3x10(6) s(-1), respectively). This is optimal for attaining maximum proton relaxivities for Gd(III)-based, macrocyclic MRI contrast agents. The activation volume of the water exchange, measured by variable-pressure (17)O NMR spectroscopy, evidences a dissociative interchange mechanism for Gd(eptpa)(H(2)O) (DeltaV(not equal sign)=(+6.6+/-1.0) cm(3) mol(-1)). In contrast to Gd(eptpa)(H(2)O), an interchange mechanism is proved for the macrocyclic Gd(trita)(H(2)O) (DeltaV (not equal sign)=(-1.5+/-1.0) cm(3) mol(-1)), which has one more CH(2) group in the macrocycle than the commercial MRI contrast agent Gd(dota)(H(2)O), and for which the elongation of the amine backbone also resulted in a remarkably fast water exchange. When one acetate of DTPA(5-) is substituted by a propionate, the water exchange rate on the Gd(III) complex increases by a factor of 10 (k(ex)298=31x10(6) s(-1)). The Gd(dptpa) chelate has no inner-sphere water molecule. The protonation constants of the EPTPA-bz-NO(2) (5-) and DPTPA(5-) ligands and the stability constants of their complexes with Gd(III), Zn(II), Cu(II) and Ca(II) were determined by pH potentiometry. Although the thermodynamic stability of Gd(eptpa-bz-NO(2))(H(2)O) is reduced to a slight extent in comparison with Gd(dtpa)(H(2)O), it is stable enough to be used in medical diagnostics as an MRI contrast agent. Therefore both this chelate and Gd(trita)(H(2)O) are potential building blocks for the development of high-relaxivity macromolecular agents.
基于对九配位单水合钆(III)聚氨基羧酸盐配合物内界结构的考虑,我们通过在水结合位点周围引入空间压缩成功加速了水交换。我们对常见的二乙三胺五乙酸(DTPA(5-))配体进行了修饰,将主链中的一个(EPTPA(5-))或两个(DPTPA(5-))亚乙基桥替换为亚丙基桥,或者用丙酸酯臂替换一个配位乙酸根(DTTA-prop(5-))。配体EPTPA(5-)还通过硝基苄基连接基团(EPTPA-bz-NO₂(5-))进行了功能化,以便使螯合物能够与大分子偶联。通过变温¹⁷O核磁共振和电子顺磁共振研究确定,[Gd(eptpa-bz-NO₂)(H₂O)]²⁻和[Gd(eptpa)(H₂O)]²⁻上的水交换速率比[Gd(dtpa)(H₂O)]²⁻高两个数量级(k_ex298分别为150×10⁶、330×10⁶和3.3×10⁶ s⁻¹)。这对于获得基于钆(III)的大环磁共振成像造影剂的最大质子弛豫率是最佳的。通过变压¹⁷O核磁共振光谱测量的水交换活化体积表明,[Gd(eptpa)(H₂O)]²⁻的交换机制为离解交换(ΔV≠=(+6.6±1.0) cm³ mol⁻¹)。与[Gd(eptpa)(H₂O)]²⁻不同,大环[Gd(trita)(H₂O)]⁻(ΔV≠=(-1.5±1.0) cm³ mol⁻¹)的交换机制已得到证实,其大环中的亚甲基比市售磁共振成像造影剂[Gd(dota)(H₂O)]⁻多一个,并且其胺主链的延长也导致水交换非常快。当DTPA(5-)的一个乙酸根被丙酸根取代时,钆(III)配合物上的水交换速率提高了10倍(k_ex298 = 31×10⁶ s⁻¹)。[Gd(dptpa)]²⁻螯合物没有内界水分子。通过pH电位滴定法测定了EPTPA-bz-NO₂(5-)和DPTPA(5-)配体的质子化常数以及它们与钆(III)、锌(II)、铜(II)和钙(II)形成的配合物的稳定性常数。尽管与[Gd(dtpa)(H₂O)]²⁻相比,[Gd(eptpa-bz-NO₂)(H₂O)]²⁻的热力学稳定性略有降低,但它足够稳定,可以用作磁共振成像造影剂用于医学诊断。因此,这种螯合物和[Gd(trita)(H₂O)]⁻都是开发高弛豫率大分子造影剂的潜在构建单元。