Suppr超能文献

酵母全基因组表达分析表明,在工业贮藏啤酒发酵的初始阶段,存在强烈的麦角固醇和氧化应激反应。

Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation.

作者信息

Higgins Vincent J, Beckhouse Anthony G, Oliver Anthony D, Rogers Peter J, Dawes Ian W

机构信息

Clive and Vera Ramaciotti Centre for Gene Function Analysis. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.

出版信息

Appl Environ Microbiol. 2003 Aug;69(8):4777-87. doi: 10.1128/AEM.69.8.4777-4787.2003.

Abstract

Genome-wide expression analysis of an industrial strain of Saccharomyces cerevisiae during the initial stages of an industrial lager fermentation identified a strong response from genes involved in the biosynthesis of ergosterol and oxidative stress protection. The induction of the ERG genes was confirmed by Northern analysis and was found to be complemented by a rapid accumulation of ergosterol over the initial 6-h fermentation period. From a test of the metabolic activity of deletion mutants in the ergosterol biosynthesis pathway, it was found that ergosterol is an important factor in restoring the fermentative capacity of the cell after storage. Additionally, similar ERG10 and TRR1 gene expression patterns over the initial 24-h fermentation period highlighted a possible interaction between ergosterol biosynthesis and the oxidative stress response. Further analysis showed that erg mutants producing altered sterols were highly sensitive to oxidative stress-generating compounds. Here we show that genome-wide expression analysis can be used in the commercial environment and was successful in identifying environmental conditions that are important in industrial yeast fermentation.

摘要

对工业拉格啤酒发酵初期的酿酒酵母工业菌株进行全基因组表达分析,结果表明,参与麦角固醇生物合成和氧化应激保护的基因有强烈反应。通过Northern分析证实了ERG基因的诱导,并发现麦角固醇在发酵初期的6小时内迅速积累,起到了补充作用。通过对麦角固醇生物合成途径中缺失突变体的代谢活性测试发现,麦角固醇是恢复细胞储存后发酵能力的重要因素。此外,在发酵初期的24小时内,ERG10和TRR1基因呈现出相似的表达模式,这突出了麦角固醇生物合成与氧化应激反应之间可能存在的相互作用。进一步分析表明,产生改变的固醇的erg突变体对产生氧化应激的化合物高度敏感。我们在此表明,全基因组表达分析可用于商业环境,并成功识别出在工业酵母发酵中重要的环境条件。

相似文献

3
Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.
J Ind Microbiol Biotechnol. 2015 Feb;42(2):207-18. doi: 10.1007/s10295-014-1556-7. Epub 2014 Dec 5.
5
Outline of the biosynthesis and regulation of ergosterol in yeast.
World J Microbiol Biotechnol. 2019 Jun 20;35(7):98. doi: 10.1007/s11274-019-2673-2.
6
Regulation of Ergosterol Biosynthesis in .
Genes (Basel). 2020 Jul 15;11(7):795. doi: 10.3390/genes11070795.
8
Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
FEMS Microbiol Lett. 2009 Oct;299(1):95-9. doi: 10.1111/j.1574-6968.2009.01733.x. Epub 2009 Jul 22.
9
The yeast pantothenate kinase Cab1 is a master regulator of sterol metabolism and of susceptibility to ergosterol biosynthesis inhibitors.
J Biol Chem. 2019 Oct 4;294(40):14757-14767. doi: 10.1074/jbc.RA119.009791. Epub 2019 Aug 13.

引用本文的文献

1
Obtaining new brewing yeasts using regional Chilean wine yeasts through an adaptive evolution program.
Front Microbiol. 2025 Jun 16;16:1599904. doi: 10.3389/fmicb.2025.1599904. eCollection 2025.
2
Protein kinases Elm1 and Sak1 of Saccharomyces cerevisiae exerted different functions under high-glucose and heat shock stresses.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2029-2042. doi: 10.1007/s00253-022-11840-2. Epub 2022 Feb 23.
4
Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris.
Biotechnol Biofuels. 2021 Jul 20;14(1):160. doi: 10.1186/s13068-021-02013-w.
7
Adaptive Response and Tolerance to Acetic Acid in and : A Physiological Genomics Perspective.
Front Microbiol. 2018 Feb 21;9:274. doi: 10.3389/fmicb.2018.00274. eCollection 2018.
9
The complex genetic and molecular basis of a model quantitative trait.
Mol Biol Cell. 2016 Jan 1;27(1):209-18. doi: 10.1091/mbc.E15-06-0408. Epub 2015 Oct 28.

本文引用的文献

1
High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production.
Appl Environ Microbiol. 1984 Sep;48(3):639-46. doi: 10.1128/aem.48.3.639-646.1984.
2
FunSpec: a web-based cluster interpreter for yeast.
BMC Bioinformatics. 2002 Nov 13;3:35. doi: 10.1186/1471-2105-3-35.
3
Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.
Appl Environ Microbiol. 2002 Nov;68(11):5326-35. doi: 10.1128/AEM.68.11.5326-5335.2002.
4
Study of the first hours of microvinification by the use of osmotic stress-response genes as probes.
Syst Appl Microbiol. 2002 Apr;25(1):153-61. doi: 10.1078/0723-2020-00087.
6
Creating the gene ontology resource: design and implementation.
Genome Res. 2001 Aug;11(8):1425-33. doi: 10.1101/gr.180801.
7
MUP1, high affinity methionine permease, is involved in cysteine uptake by Saccharomyces cerevisiae.
Biosci Biotechnol Biochem. 2001 Mar;65(3):728-31. doi: 10.1271/bbb.65.728.
9
Transcript expression in Saccharomyces cerevisiae at high salinity.
J Biol Chem. 2001 May 11;276(19):15996-6007. doi: 10.1074/jbc.M008209200. Epub 2001 Feb 14.
10
Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae.
Mol Microbiol. 2001 Feb;39(3):595-605. doi: 10.1046/j.1365-2958.2001.02255.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验