Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520.
Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520.
J Biol Chem. 2019 Oct 4;294(40):14757-14767. doi: 10.1074/jbc.RA119.009791. Epub 2019 Aug 13.
In fungi, ergosterol is an essential component of the plasma membrane. Its biosynthesis from acetyl-CoA is the primary target of the most commonly used antifungal drugs. Here, we show that the pantothenate kinase Cab1p, which catalyzes the first step in the metabolism of pantothenic acid for CoA biosynthesis in budding yeast (), significantly regulates the levels of sterol intermediates and the activities of ergosterol biosynthesis-targeting antifungals. Using genetic and pharmacological analyses, we show that altered pantothenate utilization dramatically alters the susceptibility of yeast cells to ergosterol biosynthesis inhibitors. Genome-wide transcription and MS-based analyses revealed that this regulation is mediated by changes both in the expression of ergosterol biosynthesis genes and in the levels of sterol intermediates. Consistent with these findings, drug interaction experiments indicated that inhibition of pantothenic acid utilization synergizes with the activity of the ergosterol molecule-targeting antifungal amphotericin B and antagonizes that of the ergosterol pathway-targeting antifungal drug terbinafine. Our finding that CoA metabolism controls ergosterol biosynthesis and susceptibility to antifungals could set the stage for the development of new strategies to manage fungal infections and to modulate the potency of current drugs against drug-sensitive and -resistant fungal pathogens.
在真菌中,麦角固醇是质膜的重要组成部分。其由乙酰辅酶 A 生物合成是最常用的抗真菌药物的主要靶标。在这里,我们表明,泛酸激酶 Cab1p 催化了用于从头合成酵母()中辅酶 A 的泛酸代谢的第一步,它显著调节固醇中间体的水平和麦角固醇生物合成靶向抗真菌药物的活性。通过遗传和药理学分析,我们表明,泛酸利用的改变极大地改变了酵母细胞对麦角固醇生物合成抑制剂的敏感性。全基因组转录和基于 MS 的分析表明,这种调节是通过固醇生物合成基因的表达和固醇中间体水平的变化来介导的。与这些发现一致,药物相互作用实验表明,抑制泛酸利用与麦角固醇靶向抗真菌药物两性霉素 B 的活性协同,并拮抗麦角固醇途径靶向抗真菌药物特比萘芬的活性。我们的发现表明,辅酶 A 代谢控制麦角固醇生物合成和对抗真菌药物的敏感性,这可能为开发新策略来管理真菌感染和调节现有药物对敏感和耐药真菌病原体的效力奠定基础。