Cherepinsky Vera, Feng Jiawu, Rejali Marc, Mishra Bud
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9668-73. doi: 10.1073/pnas.1633770100. Epub 2003 Aug 5.
The current standard correlation coefficient used in the analysis of microarray data was introduced by M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein [(1998) Proc. Natl. Acad. Sci. USA 95, 14863-14868]. Its formulation is rather arbitrary. We give a mathematically rigorous correlation coefficient of two data vectors based on James-Stein shrinkage estimators. We use the assumptions described by Eisen et al., also using the fact that the data can be treated as transformed into normal distributions. While Eisen et al. use zero as an estimator for the expression vector mean mu, we start with the assumption that for each gene, mu is itself a zero-mean normal random variable [with a priori distribution N(0,tau 2)], and use Bayesian analysis to obtain a posteriori distribution of mu in terms of the data. The shrunk estimator for mu differs from the mean of the data vectors and ultimately leads to a statistically robust estimator for correlation coefficients. To evaluate the effectiveness of shrinkage, we conducted in silico experiments and also compared similarity metrics on a biological example by using the data set from Eisen et al. For the latter, we classified genes involved in the regulation of yeast cell-cycle functions by computing clusters based on various definitions of correlation coefficients and contrasting them against clusters based on the activators known in the literature. The estimated false positives and false negatives from this study indicate that using the shrinkage metric improves the accuracy of the analysis.
微阵列数据分析中使用的当前标准相关系数由M. B. 艾森、P. T. 斯佩尔曼、P. O. 布朗和D. 博特斯坦引入([1998年,《美国国家科学院院刊》95卷,第14863 - 14868页])。其公式相当随意。我们基于詹姆斯 - 斯坦收缩估计量给出了两个数据向量的数学上严格的相关系数。我们采用艾森等人描述的假设,同时也利用数据可被视为已转换为正态分布这一事实。虽然艾森等人使用零作为表达向量均值μ的估计量,但我们从这样的假设出发:对于每个基因,μ本身是一个均值为零的正态随机变量[具有先验分布N(0, τ²)],并使用贝叶斯分析根据数据获得μ的后验分布。μ的收缩估计量与数据向量的均值不同,最终得到一个统计上稳健的相关系数估计量。为了评估收缩的有效性,我们进行了计算机模拟实验,并通过使用艾森等人的数据集在一个生物学实例上比较了相似性度量。对于后者,我们通过基于相关系数的各种定义计算聚类并将它们与基于文献中已知激活剂的聚类进行对比,对参与酵母细胞周期功能调控的基因进行了分类。这项研究估计的假阳性和假阴性表明,使用收缩度量提高了分析的准确性。