Suppr超能文献

一种用于基因表达数据分类的组合特征选择与集成神经网络方法。

A combinational feature selection and ensemble neural network method for classification of gene expression data.

作者信息

Liu Bing, Cui Qinghua, Jiang Tianzi, Ma Songde

机构信息

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, P. R. China.

出版信息

BMC Bioinformatics. 2004 Sep 27;5:136. doi: 10.1186/1471-2105-5-136.

Abstract

BACKGROUND

Microarray experiments are becoming a powerful tool for clinical diagnosis, as they have the potential to discover gene expression patterns that are characteristic for a particular disease. To date, this problem has received most attention in the context of cancer research, especially in tumor classification. Various feature selection methods and classifier design strategies also have been generally used and compared. However, most published articles on tumor classification have applied a certain technique to a certain dataset, and recently several researchers compared these techniques based on several public datasets. But, it has been verified that differently selected features reflect different aspects of the dataset and some selected features can obtain better solutions on some certain problems. At the same time, faced with a large amount of microarray data with little knowledge, it is difficult to find the intrinsic characteristics using traditional methods. In this paper, we attempt to introduce a combinational feature selection method in conjunction with ensemble neural networks to generally improve the accuracy and robustness of sample classification.

RESULTS

We validate our new method on several recent publicly available datasets both with predictive accuracy of testing samples and through cross validation. Compared with the best performance of other current methods, remarkably improved results can be obtained using our new strategy on a wide range of different datasets.

CONCLUSIONS

Thus, we conclude that our methods can obtain more information in microarray data to get more accurate classification and also can help to extract the latent marker genes of the diseases for better diagnosis and treatment.

摘要

背景

微阵列实验正成为临床诊断的有力工具,因为它们有潜力发现特定疾病所特有的基因表达模式。迄今为止,这个问题在癌症研究领域,尤其是肿瘤分类方面受到了最多关注。各种特征选择方法和分类器设计策略也已被普遍使用和比较。然而,大多数已发表的关于肿瘤分类的文章都将某种技术应用于某个特定数据集,最近一些研究人员基于几个公共数据集对这些技术进行了比较。但是,已经证实不同选择的特征反映了数据集的不同方面,并且一些选择的特征在某些特定问题上可以获得更好的解决方案。同时,面对大量几乎没有相关知识的微阵列数据,使用传统方法很难找到其内在特征。在本文中,我们尝试引入一种结合集成神经网络的组合特征选择方法,以普遍提高样本分类的准确性和鲁棒性。

结果

我们在几个最近公开可用的数据集上验证了我们的新方法,既通过测试样本的预测准确性,也通过交叉验证。与其他当前方法的最佳性能相比,使用我们的新策略在广泛的不同数据集上可以获得显著改进的结果。

结论

因此,我们得出结论,我们的方法可以在微阵列数据中获取更多信息以实现更准确的分类,还可以帮助提取疾病的潜在标记基因,以实现更好的诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ca/522806/cb184bfcc337/1471-2105-5-136-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验