Suppr超能文献

质粒积累会缩短酿酒酵母的寿命。

Plasmid accumulation reduces life span in Saccharomyces cerevisiae.

作者信息

Falcón Alaric A, Aris John P

机构信息

Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610-0235, USA.

出版信息

J Biol Chem. 2003 Oct 24;278(43):41607-17. doi: 10.1074/jbc.M307025200. Epub 2003 Aug 6.

Abstract

Aging in the yeast Saccharomyces cerevisiae is under the control of multiple pathways. The production and accumulation of extrachromosomal rDNA circles (ERCs) is one pathway that has been proposed to bring about aging in yeast. To test this proposal, we have developed a plasmid-based model system to study the role of DNA episomes in reduction of yeast life span. Recombinant plasmids containing different replication origins, cis-acting partitioning elements, and selectable marker genes were constructed and analyzed for their effects on yeast replicative life span. Plasmids containing the ARS1 replication origin reduce life span to the greatest extent of the plasmids analyzed. This reduction in life span is partially suppressed by a CEN4 centromeric element on ARS1 plasmids. Plasmids containing a replication origin from the endogenous yeast 2 mu circle also reduce life span, but to a lesser extent than ARS1 plasmids. Consistent with this, ARS1 and 2 mu origin plasmids accumulate in approximately 7-generation-old cells, but ARS1/CEN4 plasmids do not. Importantly, ARS1 plasmids accumulate to higher levels in old cells than 2 mu origin plasmids, suggesting a correlation between plasmid accumulation and life span reduction. Reduction in life span is neither an indirect effect of increased ERC levels nor the result of stochastic cessation of growth. The presence of a fully functional 9.1-kb rDNA repeat on plasmids is not required for, and does not augment, reduction in life span. These findings support the view that accumulation of DNA episomes, including episomes such as ERCs, cause cell senescence in yeast.

摘要

酿酒酵母中的衰老受多种途径的控制。染色体外rDNA环(ERC)的产生和积累是一种被认为会导致酵母衰老的途径。为了验证这一观点,我们开发了一种基于质粒的模型系统来研究DNA附加体在缩短酵母寿命中的作用。构建了含有不同复制起点、顺式作用分配元件和选择标记基因的重组质粒,并分析它们对酵母复制寿命的影响。含有ARS1复制起点的质粒在分析的质粒中对寿命的缩短程度最大。ARS1质粒上的CEN4着丝粒元件可部分抑制这种寿命缩短。含有来自内源性酵母2μm环复制起点的质粒也会缩短寿命,但程度小于ARS1质粒。与此一致的是,ARS1和2μm起点质粒在约7代龄的细胞中积累,但ARS1/CEN4质粒则不会。重要的是,ARS1质粒在老龄细胞中的积累水平高于2μm起点质粒,这表明质粒积累与寿命缩短之间存在相关性。寿命缩短既不是ERC水平升高的间接效应,也不是随机生长停止的结果。质粒上存在完全功能性的9.1 kb rDNA重复序列对于寿命缩短并非必需,也不会增强寿命缩短。这些发现支持了这样一种观点,即包括ERC等附加体在内的DNA附加体的积累会导致酵母细胞衰老。

相似文献

1
Plasmid accumulation reduces life span in Saccharomyces cerevisiae.
J Biol Chem. 2003 Oct 24;278(43):41607-17. doi: 10.1074/jbc.M307025200. Epub 2003 Aug 6.
2
2-micron circle plasmids do not reduce yeast life span.
FEMS Microbiol Lett. 2005 Sep 15;250(2):245-51. doi: 10.1016/j.femsle.2005.07.018.
4
[Extrachromosomal DNA in yeast-Saccharomyces].
Mol Biol (Mosk). 1983 Sep-Oct;17(5):983-91.
5
The effect of replication initiation on gene amplification in the rDNA and its relationship to aging.
Mol Cell. 2009 Sep 11;35(5):683-93. doi: 10.1016/j.molcel.2009.07.012.
9
Functional equivalency and diversity of cis-acting elements among yeast replication origins.
Mol Cell Biol. 1997 Sep;17(9):5473-84. doi: 10.1128/MCB.17.9.5473.

引用本文的文献

1
Noncanonical and reversible cysteine ubiquitination prevents the overubiquitination of PEX5 at the peroxisomal membrane.
PLoS Biol. 2024 Mar 12;22(3):e3002567. doi: 10.1371/journal.pbio.3002567. eCollection 2024 Mar.
3
Understanding the Impact of Industrial Stress Conditions on Replicative Aging in .
Front Fungal Biol. 2021 Jun 2;2:665490. doi: 10.3389/ffunb.2021.665490. eCollection 2021.
4
Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation.
PLoS Biol. 2023 Aug 29;21(8):e3002250. doi: 10.1371/journal.pbio.3002250. eCollection 2023 Aug.
5
Spindle Position Checkpoint Kinase Kin4 Regulates Organelle Transport in .
Biomolecules. 2023 Jul 10;13(7):1098. doi: 10.3390/biom13071098.
7
Evidence that conserved essential genes are enriched for pro-longevity factors.
Geroscience. 2022 Aug;44(4):1995-2006. doi: 10.1007/s11357-022-00604-5. Epub 2022 Jun 13.
9
Advances in quantitative biology methods for studying replicative aging in .
Transl Med Aging. 2020;4:151-160. doi: 10.1016/j.tma.2019.09.002. Epub 2019 Sep 12.
10
Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast.
Front Cell Dev Biol. 2021 Jan 12;8:619126. doi: 10.3389/fcell.2020.619126. eCollection 2020.

本文引用的文献

1
Life span of individual yeast cells.
Nature. 1959 Jun 20;183(4677):1751-2. doi: 10.1038/1831751a0.
2
Asymmetric inheritance of oxidatively damaged proteins during cytokinesis.
Science. 2003 Mar 14;299(5613):1751-3. doi: 10.1126/science.1080418. Epub 2003 Feb 27.
4
Mitochondrial DNA repair and aging.
Mutat Res. 2002 Nov 30;509(1-2):127-51. doi: 10.1016/s0027-5107(02)00220-8.
6
High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction.
Mol Cell Biol. 2002 Nov;22(22):8056-66. doi: 10.1128/MCB.22.22.8056-8066.2002.
7
Growing old: metabolic control and yeast aging.
Annu Rev Microbiol. 2002;56:769-92. doi: 10.1146/annurev.micro.56.012302.160830. Epub 2002 Jan 30.
8
Separation of mother and daughter cells.
Methods Enzymol. 2002;351:468-77. doi: 10.1016/s0076-6879(02)51865-6.
9
Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method.
Methods Enzymol. 2002;350:87-96. doi: 10.1016/s0076-6879(02)50957-5.
10
Getting started with yeast.
Methods Enzymol. 2002;350:3-41. doi: 10.1016/s0076-6879(02)50954-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验