Hansen Jens, Floss Thomas, Van Sloun Petra, Füchtbauer Ernst-Martin, Vauti Franz, Arnold Hans-Hennig, Schnütgen Frank, Wurst Wolfgang, von Melchner Harald, Ruiz Patricia
Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9918-22. doi: 10.1073/pnas.1633296100. Epub 2003 Aug 6.
A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.
后基因组时代的一项重大挑战是对哺乳动物基因组中的每一个基因进行功能表征。为应对这一挑战,我们构建了一个小鼠胚胎干细胞(ES细胞)突变体库,这是迄今为止最大的可公开获取的此类突变体库。我们使用四种不同的基因捕获载体,从超过11,000个ES细胞克隆中生成了5,142个与基因捕获整合位点相邻的序列(基因捕获序列标签;http://genetrap.de)。尽管大多数基因捕获载体插入在整个基因组中随机发生,但我们发现了与载体无关和载体特异性的整合“热点”。由于超过50%的热点是载体特异性的,我们得出结论,用基因捕获插入来饱和小鼠基因组的最有效方法是使用基因捕获载体的组合。当将基因捕获整合的随机样本传递到种系时,59%(29个中的17个)在转基因小鼠中产生了可观察到的表型,这一频率与通过传统基因靶向获得的频率相似。因此,基因捕获能够大规模且经济高效地产生ES细胞克隆,其突变分布在整个基因组中,这一资源可能会加速基因组注释以及人类疾病的体内建模。