Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, 84105 Beer-Sheva, Israel.
Clin Pharmacokinet. 2013 Jun;52(6):415-31. doi: 10.1007/s40262-013-0042-0.
The chemical structure of any drug determines its pharmacokinetics and pharmacodynamics. Detailed understanding of relationships between the drug chemical structure and individual disposition pathways (i.e., distribution and elimination) is required for efficient use of existing drugs and effective development of new drugs. Different approaches have been developed for this purpose, ranging from statistics-based quantitative structure-property (or structure-pharmacokinetic) relationships (QSPR) analysis to physiologically based pharmacokinetic (PBPK) models. This review critically analyzes currently available approaches for analysis and prediction of drug disposition on the basis of chemical structure. Models that can be used to predict different aspects of disposition are presented, including: (a) value of the individual pharmacokinetic parameter (e.g., clearance or volume of distribution), (b) efficiency of the specific disposition pathway (e.g., biliary drug excretion or cytochrome P450 3A4 metabolism), (c) accumulation in a specific organ or tissue (e.g., permeability of the placenta or accumulation in the brain), and (d) the whole-body disposition in the individual patients. Examples of presented pharmacological agents include "classical" low-molecular-weight compounds, biopharmaceuticals, and drugs encapsulated in specialized drug-delivery systems. The clinical efficiency of agents from all these groups can be suboptimal, because of inefficient permeability of the drug to the site of action and/or excessive accumulation in other organs and tissues. Therefore, robust and reliable approaches for chemical structure-based prediction of drug disposition are required to overcome these limitations. PBPK models are increasingly being used for prediction of drug disposition. These models can reflect the complex interplay of factors that determine drug disposition in a mechanistically correct fashion and can be combined with other approaches, for example QSPR-based prediction of drug permeability and metabolism, pharmacogenomic data and tools, pharmacokinetic-pharmacodynamic modeling approaches, etc. Moreover, the PBPK models enable detailed analysis of clinically relevant scenarios, for example the effect of the specific conditions on the time course of the analyzed drug in the individual organs and tissues, including the site of action. It is expected that further development of such combined approaches will increase their precision, enhance the effectiveness of drugs, and lead to individualized drug therapy for different patient populations (geriatric, pediatric, specific diseases, etc.).
药物的化学结构决定了其药代动力学和药效学。为了有效利用现有药物和开发新药物,需要详细了解药物化学结构与个体处置途径(即分布和消除)之间的关系。为此,已经开发了不同的方法,从基于统计学的定量构效关系(QSPR)分析到基于生理学的药代动力学(PBPK)模型。本综述批判性地分析了目前基于化学结构分析和预测药物处置的方法。介绍了可以用于预测不同处置方面的模型,包括:(a)个体药代动力学参数的值(例如清除率或分布容积),(b)特定处置途径的效率(例如胆汁药物排泄或细胞色素 P450 3A4 代谢),(c)在特定器官或组织中的积累(例如胎盘的通透性或脑内的积累),以及(d)个体患者的全身处置。所介绍的药理学制剂的示例包括“经典”低分子量化合物、生物制药和封装在专门药物递送系统中的药物。由于药物向作用部位的通透性不足和/或在其他器官和组织中过度积累,所有这些制剂的药物的临床疗效可能都不理想。因此,需要基于化学结构的药物处置预测的稳健可靠方法来克服这些局限性。PBPK 模型越来越多地用于预测药物处置。这些模型可以以机械正确的方式反映决定药物处置的复杂因素相互作用,并可以与其他方法结合使用,例如基于 QSPR 的药物通透性和代谢预测、药物基因组学数据和工具、药代动力学-药效学建模方法等。此外,PBPK 模型能够详细分析临床相关场景,例如特定条件对个体器官和组织中分析药物的时间过程的影响,包括作用部位。预计这种组合方法的进一步发展将提高其精度,增强药物的有效性,并为不同患者群体(老年、儿科、特定疾病等)提供个体化药物治疗。