Sintchenko Vitali, Coiera Enrico W
Centre for Health Informatics, University of New South Wales, Sydney 2052, Australia.
Int J Med Inform. 2003 Jul;70(2-3):309-16. doi: 10.1016/s1386-5056(03)00040-6.
To describe a model for analysing complex medical decision making tasks and for evaluating their suitability for automation.
Assessment of a decision task's complexity in terms of the number of elementary information processes (EIPs) and the potential for cognitive effort reduction through EIP minimisation using an automated decision aid.
The model consists of five steps: (1) selection of the domain and relevant tasks; (2) evaluation of the knowledge complexity for tasks selected; (3) identification of cognitively demanding tasks; (4) assessment of unaided and aided effort requirements for this task accomplishment; and (5) selection of computational tools to achieve this complexity reduction. The model is applied to the task of antibiotic prescribing in critical care and the most complex components of the task identified. Decision aids to support these components can provide a significant reduction of cognitive effort suggesting this is a decision task worth automating.
We view the role of decision support for complex decision to be one of task complexity reduction, and the model described allows for task automation without lowering decision quality and can assist decision support systems developers.
描述一种用于分析复杂医疗决策任务并评估其自动化适用性的模型。
根据基本信息流程(EIP)的数量以及使用自动化决策辅助工具通过最小化EIP来减少认知工作量的可能性,对决策任务的复杂性进行评估。
该模型包括五个步骤:(1)选择领域和相关任务;(2)评估所选任务的知识复杂性;(3)识别认知要求高的任务;(4)评估完成此任务所需的无辅助和辅助努力;(5)选择计算工具以实现这种复杂性降低。该模型应用于重症监护中的抗生素处方任务,并确定了该任务最复杂的组成部分。支持这些组成部分的决策辅助工具可以显著减少认知工作量,表明这是一项值得自动化的决策任务。
我们认为复杂决策的决策支持作用之一是降低任务复杂性,所描述的模型允许在不降低决策质量的情况下实现任务自动化,并可协助决策支持系统开发人员。