Suppr超能文献

Collagen type 1 retards tube formation by human microvascular endothelial cells in a fibrin matrix.

作者信息

Kroon Marielle E, van Schie Marianke L J, van der Vecht Bea, van Hinsbergh Victor W M, Koolwijk Pieter

机构信息

Gaubius Laboratory TNO-PG, Leiden, The Netherlands.

出版信息

Angiogenesis. 2002;5(4):257-65. doi: 10.1023/a:1024540701634.

Abstract

Angiogenesis, or the formation of new microvessels, is often encountered in pathological situations. A fibrinous exudate can often act as a temporary matrix for the ingrowth of these new microvessels. This matrix consists mainly of fibrin, but is mingled with other plasma components and interstitial collagen fibres. In vitro, capillary-like tube formation can be mimicked by exposing human microvascular endothelial cells (hMVECs), seeded on top of a three-dimensional fibrin matrix, to an angiogenic growth factor (e.g. fibroblast growth factor (FGF)-2) and the cytokine tumour necrosis factor (TNF)-alpha. Plasmin activity is required in this process. We investigated whether the angiogenic potential of hMVECs was altered by the presence of collagen. The addition of type I collagen to fibrin matrices dose-dependently inhibited tube-formation. Tube-formation in these fibrin/collagen matrices by hMVECs required matrix metalloprotease (MMP) activity, as well as plasmin activity. On a pure collagen type I matrix, hMVECs were not able to form tube-like structures in the matrix but formed sprouts. This sprouting required MMP activity and was, in contrast to the tube-like structures in a fibrin matrix, not influenced by hypoxia. These data indicate that the interaction between endothelial cells and different matrix components is of importance for the angiogenic potential of these cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验