Suppr超能文献

蛋白水解靶向因子RssB和ClpX对σ(S)中两个不同位点的顺序识别。

Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX.

作者信息

Stüdemann Andrea, Noirclerc-Savoye Marjolaine, Klauck Eberhard, Becker Gisela, Schneider Dominique, Hengge Regine

机构信息

Institut für Biologie-Mikrobiologie, Freie Universität Berlin, D-14195 Berlin, Germany.

出版信息

EMBO J. 2003 Aug 15;22(16):4111-20. doi: 10.1093/emboj/cdg411.

Abstract

sigma(S) (RpoS), the master regulator of the general stress response in Escherichia coli, is a model system for regulated proteolysis in bacteria. sigma(S) turnover requires ClpXP and the response regulator RssB, whose phosphorylated form exhibits high affinity for sigma(S). Here, we demonstrate that recognition by the RssB/ClpXP system involves two distinct regions in sigma(S). Region 2.5 of sigma(S) (a long alpha-helix) is sufficient for binding of phosphorylated RssB. However, this interaction alone is not sufficient to trigger proteolysis. A second region located in the N-terminal part of sigma(S), which is exposed only upon RssB-sigma(S) interaction, serves as a binding site for the ClpX chaperone. Binding of the ClpX hexameric ring to sigma(S)-derived reporter proteins carrying the ClpX-binding site (but not the RssB-binding site) is also not sufficient to commit the protein to degradation. Our data indicate that RssB plays a second role in the initiation of sigma(S) proteolysis that goes beyond targeting of sigma(S) to ClpX, and suggest a model for the sequence of events in the initiation of sigma(S) proteolysis.

摘要

σ(S)(RpoS)是大肠杆菌中一般应激反应的主要调节因子,是细菌中受调控的蛋白水解的一个模型系统。σ(S)的周转需要ClpXP和反应调节因子RssB,其磷酸化形式对σ(S)具有高亲和力。在这里,我们证明RssB/ClpXP系统的识别涉及σ(S)中的两个不同区域。σ(S)的2.5区域(一个长的α螺旋)足以结合磷酸化的RssB。然而,仅这种相互作用不足以触发蛋白水解。位于σ(S) N端部分的第二个区域,仅在RssB-σ(S)相互作用时才暴露,作为ClpX伴侣蛋白的结合位点。ClpX六聚体环与携带ClpX结合位点(但不携带RssB结合位点)的σ(S)衍生报告蛋白的结合也不足以使该蛋白被降解。我们的数据表明,RssB在σ(S)蛋白水解起始中发挥了第二个作用,这超出了将σ(S)靶向ClpX的范畴,并提出了一个σ(S)蛋白水解起始事件序列的模型。

相似文献

引用本文的文献

4
RpoS and the bacterial general stress response.RpoS 和细菌一般应激反应。
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0015122. doi: 10.1128/mmbr.00151-22. Epub 2024 Feb 27.
7
Bacterial degrons in synthetic circuits.细菌降解物在合成回路中的作用。
Open Biol. 2022 Aug;12(8):220180. doi: 10.1098/rsob.220180. Epub 2022 Aug 17.

本文引用的文献

1
Regulation by proteolysis in bacterial cells.细菌细胞中通过蛋白水解作用进行的调控。
Curr Opin Microbiol. 2003 Apr;6(2):163-72. doi: 10.1016/s1369-5274(03)00029-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验