Suppr超能文献

STEF/Tiam1、Rac1和JNK在皮质神经元迁移中的体内作用。

The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration.

作者信息

Kawauchi Takeshi, Chihama Kaori, Nabeshima Yo-ichi, Hoshino Mikio

机构信息

Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

EMBO J. 2003 Aug 15;22(16):4190-201. doi: 10.1093/emboj/cdg413.

Abstract

The coordinated migration of neurons is a pivotal step for functional architectural formation of the mammalian brain. To elucidate its molecular mechanism, gene transfer by means of in utero electroporation was applied in the developing murine brain, revealing the crucial roles of Rac1, its activators, STEF/Tiam1, and its downstream molecule, c-Jun N-terminal kinase (JNK), in the cerebral cortex. Functional repression of these molecules resulted in inhibition of radial migration of neurons without affecting their proper differentiation. Interestingly, distinct morphological phenotypes were observed; suppression of Rac1 activity caused loss of the leading process, whereas repression of JNK activity did not, suggesting the complexity of the signaling cascade. In cultured neurons from the intermediate zone, activated JNK was detected along microtubules in the processes. Application of a JNK inhibitor caused irregular morphology and increased stable microtubules in processes, and decreased phosphorylation of microtubule associated protein 1B, raising a possibility of the involvement of JNK in controlling tubulin dynamics in migrating neurons. Our data thus provide important clues for understanding the intracellullar signaling machinery for cortical neuronal migration.

摘要

神经元的协同迁移是哺乳动物大脑功能结构形成的关键步骤。为阐明其分子机制,在发育中的小鼠大脑中应用子宫内电穿孔进行基因转移,揭示了Rac1、其激活剂STEF/Tiam1及其下游分子c-Jun氨基末端激酶(JNK)在大脑皮层中的关键作用。这些分子的功能抑制导致神经元的径向迁移受到抑制,而不影响其正常分化。有趣的是,观察到了不同的形态学表型;Rac1活性的抑制导致前端突起丧失,而JNK活性的抑制则不会,这表明信号级联反应的复杂性。在来自中间区的培养神经元中,在突起的微管上检测到活化的JNK。应用JNK抑制剂会导致形态不规则,突起中稳定微管增加,微管相关蛋白1B的磷酸化减少,这增加了JNK参与控制迁移神经元中微管蛋白动力学的可能性。因此,我们的数据为理解皮层神经元迁移的细胞内信号机制提供了重要线索。

相似文献

1
The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration.
EMBO J. 2003 Aug 15;22(16):4190-201. doi: 10.1093/emboj/cdg413.
2
Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology.
Mol Cell Neurosci. 2003 Sep;24(1):69-81. doi: 10.1016/s1044-7431(03)00122-2.
3
Characterization of STEF, a guanine nucleotide exchange factor for Rac1, required for neurite growth.
J Biol Chem. 2002 Jan 25;277(4):2860-8. doi: 10.1074/jbc.M106186200. Epub 2001 Nov 13.
4
The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling.
Cell Signal. 2014 Mar;26(3):483-91. doi: 10.1016/j.cellsig.2013.11.034. Epub 2013 Dec 2.
6
G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12365-70. doi: 10.1073/pnas.0506101102. Epub 2005 Aug 22.
8
NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration.
Glia. 2013 Dec;61(12):2078-99. doi: 10.1002/glia.22578. Epub 2013 Oct 7.
9
JNK- and Rac1-dependent induction of immediate early gene pip92 suppresses neuronal differentiation.
J Neurochem. 2007 Jan;100(2):555-66. doi: 10.1111/j.1471-4159.2006.04263.x. Epub 2006 Nov 29.

引用本文的文献

2
Association of genetic variants, protein domains, and phenotypes in the ZMIZ1 syndromic neurodevelopmental disorder.
Front Neurosci. 2025 Jun 3;19:1605762. doi: 10.3389/fnins.2025.1605762. eCollection 2025.
4
High order expression dependencies finely resolve cryptic states and subtypes in single cell data.
Mol Syst Biol. 2025 Feb;21(2):173-207. doi: 10.1038/s44320-024-00074-1. Epub 2025 Jan 2.
5
F-BAR proteins CIP4 and FBP17 function in cortical neuron radial migration and process outgrowth.
bioRxiv. 2024 Oct 25:2024.10.25.620310. doi: 10.1101/2024.10.25.620310.
6
Presynaptic Rac1 in the hippocampus selectively regulates working memory.
Elife. 2024 Jul 24;13:RP97289. doi: 10.7554/eLife.97289.
9
Immunocytochemistry of Primary Cultured Cerebral Cortical Neurons.
Methods Mol Biol. 2024;2794:177-186. doi: 10.1007/978-1-0716-3810-1_15.
10
Primary Culture of Dissociated Neurons from the Embryonic Cerebral Cortex.
Methods Mol Biol. 2024;2794:169-175. doi: 10.1007/978-1-0716-3810-1_14.

本文引用的文献

1
Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology.
Mol Cell Neurosci. 2003 Sep;24(1):69-81. doi: 10.1016/s1044-7431(03)00122-2.
3
New directions in neuronal migration.
Science. 2002 Sep 6;297(5587):1660-3. doi: 10.1126/science.1074572.
4
Visualization of cell cycling by an improvement in slice culture methods.
J Neurosci Res. 2002 Sep 15;69(6):861-8. doi: 10.1002/jnr.10335.
5
Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170.
Cell. 2002 Jun 28;109(7):873-85. doi: 10.1016/s0092-8674(02)00800-0.
6
Smooth, rough and upside-down neocortical development.
Curr Opin Genet Dev. 2002 Jun;12(3):320-7. doi: 10.1016/s0959-437x(02)00305-2.
7
Modes of neuronal migration in the developing cerebral cortex.
Nat Rev Neurosci. 2002 Jun;3(6):423-32. doi: 10.1038/nrn845.
8
Life is a journey: a genetic look at neocortical development.
Nat Rev Genet. 2002 May;3(5):342-55. doi: 10.1038/nrg799.
9
Rac GTPases control axon growth, guidance and branching.
Nature. 2002 Mar 28;416(6879):442-7. doi: 10.1038/416442a.
10
Rac function and regulation during Drosophila development.
Nature. 2002 Mar 28;416(6879):438-42. doi: 10.1038/416438a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验