Jansma Abel, Yao Yuelin, Wolfe Jareth, Del Debbio Luigi, Beentjes Sjoerd V, Ponting Chris P, Khamseh Ava
MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
Mol Syst Biol. 2025 Feb;21(2):173-207. doi: 10.1038/s44320-024-00074-1. Epub 2025 Jan 2.
Single cells are typically typed by clustering into discrete locations in reduced dimensional transcriptome space. Here we introduce Stator, a data-driven method that identifies cell (sub)types and states without relying on cells' local proximity in transcriptome space. Stator labels the same single cell multiply, not just by type and subtype, but also by state such as activation, maturity or cell cycle sub-phase, through deriving higher-order gene expression dependencies from a sparse gene-by-cell expression matrix. Stator's finer resolution is clear from analyses of mouse embryonic brain, and human healthy or diseased liver. Rather than only coarse-scale labels of cell type, Stator further resolves cell types into subtypes, and these subtypes into stages of maturity and/or cell cycle phases, and yet further into portions of these phases. Among cryptically homogeneous embryonic cells, for example, Stator finds 34 distinct radial glia states whose gene expression forecasts their future GABAergic or glutamatergic neuronal fate. Further, Stator's fine resolution of liver cancer states reveals expression programmes that predict patient survival. We provide Stator as a Nextflow pipeline and Shiny App.
单细胞通常通过在降维转录组空间中聚类到离散位置来进行分型。在此,我们介绍了Stator,这是一种数据驱动的方法,它无需依赖转录组空间中细胞的局部邻近性即可识别细胞(亚)类型和状态。Stator通过从稀疏的基因-细胞表达矩阵中推导高阶基因表达依赖性,对同一个单细胞进行多次标记,不仅按类型和亚型,还按激活、成熟或细胞周期亚阶段等状态进行标记。从对小鼠胚胎脑以及人类健康或患病肝脏的分析中可以清楚地看出Stator具有更高的分辨率。Stator并非仅提供细胞类型的粗略标记,而是进一步将细胞类型细分为亚型,再将这些亚型细分为成熟阶段和/或细胞周期阶段,甚至进一步细分为这些阶段的部分。例如,在看似均一的胚胎细胞中,Stator发现了34种不同的放射状胶质细胞状态,其基因表达可预测它们未来的GABA能或谷氨酸能神经元命运。此外,Stator对肝癌状态的精细分辨率揭示了可预测患者生存的表达程序。我们将Stator作为一个Nextflow管道和Shiny应用程序提供。