Cheong Yong Hwa, Moon Byeong Cheol, Kim Jong Kyong, Kim Cha Young, Kim Min Chul, Kim Ihn Hyoung, Park Chan Young, Kim Jong Cheol, Park Byung Ouk, Koo Seong Cheol, Yoon Hae Won, Chung Woo Sik, Lim Chae Oh, Lee Sang Yeol, Cho Moo Je
Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Korea.
Plant Physiol. 2003 Aug;132(4):1961-72. doi: 10.1104/pp.103.023176.
Mitogen-activated protein kinase (MAPK) cascades are known to transduce plant defense signals, but the downstream components of the MAPK have as yet not been elucidated. Here, we report an MAPK from rice (Oryza sativa), BWMK1, and a transcription factor, OsEREBP1, phosphorylated by the kinase. The MAPK carries a TDY phosphorylation motif instead of the more common TEY motif in its kinase domain and has an unusually extended C-terminal domain that is essential to its kinase activity and translocation to the nucleus. The MAPK phosphorylates OsEREBP1 that binds to the GCC box element (AGCCGCC) of the several basic pathogenesis-related gene promoters, which in turn enhances DNA-binding activity of the factor to the cis element in vitro. Transient co-expression of the BWMK1 and OsEREBP1 in Arabidopsis protoplasts elevates the expression of the beta-glucuronidase reporter gene driven by the GCC box element. Furthermore, transgenic tobacco (Nicotiana tabacum) plants overexpressing BWMK1 expressed many pathogenesis-related genes at higher levels than wild-type plants with an enhanced resistance to pathogens. These findings suggest that MAPKs contribute to plant defense signal transduction by phosphorylating one or more transcription factors.
已知丝裂原活化蛋白激酶(MAPK)级联可传导植物防御信号,但MAPK的下游组分尚未阐明。在此,我们报道了一种来自水稻(Oryza sativa)的MAPK,即BWMK1,以及一个被该激酶磷酸化的转录因子OsEREBP1。该MAPK在其激酶结构域中带有TDY磷酸化基序,而非更常见的TEY基序,并且具有一个异常延伸的C末端结构域,该结构域对其激酶活性和向细胞核的转位至关重要。该MAPK使与几个基本病程相关基因启动子的GCC盒元件(AGCCGCC)结合的OsEREBP1磷酸化,这反过来又增强了该因子在体外与顺式元件的DNA结合活性。BWMK1和OsEREBP1在拟南芥原生质体中的瞬时共表达提高了由GCC盒元件驱动的β-葡萄糖醛酸酶报告基因的表达。此外,过表达BWMK1的转基因烟草(Nicotiana tabacum)植株比野生型植株更高水平地表达许多病程相关基因,并且对病原体的抗性增强。这些发现表明,MAPK通过使一个或多个转录因子磷酸化来促进植物防御信号转导。